How do you simplify |2+3i|?

Answered question

2022-01-17

How do you simplify |2+3i|?

Answer & Explanation

nick1337

nick1337

Expert2022-01-18Added 573 answers

Step 1 Given: |2+3i| |a+bi|=a2+b2 So, |2+3i|=22+32 4+9 13 Hence, |2+3i|=13
Vasquez

Vasquez

Skilled2022-01-18Added 457 answers

Step 1 The inverse of 2+3i is 12+3i In general case, multiply the expression 1a+bi by the conjugate (the conjugate of a+ib is aib): 1a+ib=1(aib)(a+ib)(aib) Expand the denominator: 1(aib)(a+ib)(aib)=aiba2+b2 Split: aiba2+b2=aa2+b2iba2+b2 In our case, a=2 and b=3 Therefore, (12+3i)=(2133i13) Hence, 12+3i=2133i13
alenahelenash

alenahelenash

Skilled2022-01-24Added 366 answers

Step 1 We have that a=2 and b=3 Thus, r=(2)2+(3)2=13 Also, θ=atan(32)=atan(32) Therefore, 2+3i=13(cos(atan(32))+isin(atan(32)))

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?