Harold Kessler

Answered

2022-01-01

$X={\mathrm{log}}_{12}18$ and $Y={\mathrm{log}}_{24}54$. Find $XY+5\left(X-Y\right)$

Answer & Explanation

Andrew Reyes

Expert

2022-01-02Added 24 answers

Let $I=\frac{\mathrm{log}18}{\mathrm{log}12}\cdot \frac{\mathrm{log}54}{\mathrm{log}24}+5\left(\frac{\mathrm{log}18}{\mathrm{log}12}-\frac{\mathrm{log}54}{\mathrm{log}24}\right)$ . Also, let $\mathrm{log}3=x$ and $\mathrm{log}2=y.$
Then,
$I=\frac{{\mathrm{log}3}^{2}\cdot 2}{{\mathrm{log}2}^{2}\cdot 3}\cdot \frac{{\mathrm{log}3}^{3}\cdot 2}{{\mathrm{log}2}^{3}\cdot 3}+5\left(\frac{{\mathrm{log}3}^{2}\cdot 2}{{\mathrm{log}2}^{2}\cdot 3}-\frac{{\mathrm{log}3}^{3}\cdot 2}{{\mathrm{log}2}^{3}\cdot 3}\right)=\frac{2x+y}{2y+x}\cdot \frac{3x+y}{3y+x}+5\left(\frac{2x+y}{2y+x}-\frac{3x+y}{3y+x}\right)$
$=\frac{6{x}^{2}+5xy+{y}^{2}+10{x}^{2}+35xy+15{y}^{2}-35xy-10{y}^{2}}{\left(2y+x\right)\left(3y+x\right)}$
$=\frac{{x}^{2}+5xy+6{y}^{2}}{{x}^{2}+5xy+6{y}^{2}}=1$

Daniel Cormack

Expert

2022-01-03Added 34 answers

Note that $XY+5\left(X-Y\right)=\left(X-5\right)\left(Y+5\right)+25$, so it suffices to find $\left(X-5\right)\left(Y+5\right)$.
$\left(X-5\right)={\mathrm{log}}_{12}\left(18\right)-5={\mathrm{log}}_{12}\frac{18}{{12}^{5}}={\mathrm{log}}_{12}{3}^{-3}{2}^{-9}=-3{\mathrm{log}}_{12}\left(24\right).$
$\left(Y+5\right)={\mathrm{log}}_{24}\left(54\right)+5={\mathrm{log}}_{24}\left(54\cdot {24}^{5}\right)={\mathrm{log}}_{24}\left({2}^{16}{3}^{8}\right)=8{\mathrm{log}}_{24}\left(12\right).$
Multiplying together gives $-24{\mathrm{log}}_{12}\left(24\right){\mathrm{log}}_{24}\left(12\right)=-24{\mathrm{log}}_{12}\left(12\right)=-24.$
Adding $25$ to this gives $1$, which is your answer.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?