iohanetc

2021-08-16

To calculate: The product of $[x-(3-i)][x-(3+i)]$

oppturf

Skilled2021-08-17Added 94 answers

Step 1

Polinomial identity:

1)$(a+b)(a-b)={a}^{2}-{b}^{2}$

2)$(a-b)}^{2}={a}^{2}-2ab+{b}^{2$

Associative property,$(a+b)+c=a+(b+c)$

Step 2

If P(x) represents the give nexpression, then

$P\left(x\right)=[x-(3-i)][3-(3+i)]$

$P\left(x\right)=(x-3+i)(x-3-i)$

Use associative property of algebraic expressions,

Associative property is written as,

$(a+b)+c=a+(b+c)$

This property modifies the expressionas,

$P\left(x\right)=((x-3)+i)((x-3)-i)$

Apply arithmetic rule.

$(a+b)(a-b)={a}^{2}-{b}^{2}$

Here,

$a=(x-3),\text{}b=\left(i\right)$

Hence,

$P\left(x\right)={(x-3)}^{2}-{i}^{2}$

Apply arithmetic rule:

$(a-b)}^{2}={a}^{2}-2ab+{b}^{2$

Here, NKS$a=x,\text{}b=3$

Since${\left(i\right)}^{2}=(-1)$ , the expression becomes,

$P\left(x\right)={(x-3)}^{2}-{i}^{2}$

$={x}^{2}-6x+9+1$

$={x}^{2}-6x+10$

Hence, the product of$[x-(3-i)][x-(3+i)]$ is ${x}^{2}-6x+10$

Polinomial identity:

1)

2)

Associative property,

Step 2

If P(x) represents the give nexpression, then

Use associative property of algebraic expressions,

Associative property is written as,

This property modifies the expressionas,

Apply arithmetic rule.

Here,

Hence,

Apply arithmetic rule:

Here, NKS

Since

Hence, the product of

Jeffrey Jordon

Expert2022-07-07Added 2607 answers

$\frac{20b}{{\left(4{b}^{3}\right)}^{3}}$

Which operation could we perform in order to find the number of milliseconds in a year??

$60\cdot 60\cdot 24\cdot 7\cdot 365$ $1000\cdot 60\cdot 60\cdot 24\cdot 365$ $24\cdot 60\cdot 100\cdot 7\cdot 52$ $1000\cdot 60\cdot 24\cdot 7\cdot 52?$ Tell about the meaning of Sxx and Sxy in simple linear regression,, especially the meaning of those formulas

Is the number 7356 divisible by 12? Also find the remainder.

A) No

B) 0

C) Yes

D) 6What is a positive integer?

Determine the value of k if the remainder is 3 given $({x}^{3}+k{x}^{2}+x+5)\xf7(x+2)$

Is $41$ a prime number?

What is the square root of $98$?

Is the sum of two prime numbers is always even?

149600000000 is equal to

A)$1.496\times {10}^{11}$

B)$1.496\times {10}^{10}$

C)$1.496\times {10}^{12}$

D)$1.496\times {10}^{8}$Find the value of$\mathrm{log}1$ to the base $3$ ?

What is the square root of 3 divided by 2 .

write $\sqrt[5]{{\left(7x\right)}^{4}}$ as an equivalent expression using a fractional exponent.

simplify $\sqrt{125n}$

What is the square root of $\frac{144}{169}$