xcopyv4n

2023-03-11

What is $C35$?

Keira Fitzpatrick

Beginner2023-03-12Added 2 answers

Determine $C35$.

we know,$Crn=\frac{n!}{r!(n-r)!}$

To calculate, put $n=5,r=3$ in the above formula:

$Crn=\frac{n!}{r!(n-r)!}\Rightarrow C35=\frac{5!}{3!(5-3)!}\Rightarrow C35=\frac{5!}{3!(5-3)!}\Rightarrow C35=\frac{5!}{3!\left(2\right)!}\Rightarrow C35=\frac{5\times 4\times 3!}{3!\times 2\times 1}\Rightarrow C35=\frac{5\times 4}{2\times 1}\Rightarrow C35=5\times 2\Rightarrow C35=10$

Consequently, the necessary value is $C35=10$

we know,$Crn=\frac{n!}{r!(n-r)!}$

To calculate, put $n=5,r=3$ in the above formula:

$Crn=\frac{n!}{r!(n-r)!}\Rightarrow C35=\frac{5!}{3!(5-3)!}\Rightarrow C35=\frac{5!}{3!(5-3)!}\Rightarrow C35=\frac{5!}{3!\left(2\right)!}\Rightarrow C35=\frac{5\times 4\times 3!}{3!\times 2\times 1}\Rightarrow C35=\frac{5\times 4}{2\times 1}\Rightarrow C35=5\times 2\Rightarrow C35=10$

Consequently, the necessary value is $C35=10$