Find S, for the geometric sequences: 4,−20,100

Danelle Albright

Danelle Albright

Answered

2022-01-07

Find S, for the geometric sequences: 4,20,100

Answer & Explanation

kalfswors0m

kalfswors0m

Expert

2022-01-08Added 24 answers

The sequence has a ratio that is common to
r=204=5r 
=10020=5 
Since, the value of the r<1, the formula for the sum of the n term of the series is: 
Sn=a(1rn)1r 
The total of the first five terms is then
S5=4(1(5){5})1(5) 
=4(1+3125)1+5 
=431266 
=4(521)=2084 
Thus, the sum of the first five terms is 2084.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get your answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?