Painevg

2021-12-30

To determine:
$\frac{y}{2}-\frac{y}{5}=\frac{1}{4}$

Kayla Kline

Step 1
To find the value of $\frac{y}{2}-\frac{y}{5}=\frac{1}{4}$
Multiply by 20 on both sides,
$20\left(\frac{y}{2}-\frac{y}{5}\right)=\frac{1}{4}×20$
By distributive property,
$20\left(\frac{y}{2}-\frac{y}{5}\right)=20\frac{y}{2}-20\frac{y}{5}$
$20\left(\frac{y}{2}-\frac{y}{5}\right)=10y-4y$
$20\left(\frac{y}{2}-\frac{y}{5}\right)=6y$
The value of $\frac{1}{4}×20$ is 5.
Replace $20\left(\frac{y}{2}-\frac{y}{5}\right)$ with 6y
Replace $\frac{1}{4}×20$ with 5
$6y=5$
Divide by 6 on both sides,
$\frac{6y}{6}=\frac{5}{6}$
$y=\frac{5}{6}$
So, the value of

Mason Hall

Step 1
Simplify both sides of the equation.
$\frac{y}{2}-\frac{y}{5}=\frac{1}{4}$
$\frac{1}{2}y+\frac{-1}{5}y=\frac{1}{4}$
$\left(\frac{1}{2}y+\frac{-1}{5}y\right)=\frac{1}{4}$ (Combine Like Terms)
$\frac{3}{10}y=\frac{1}{4}$
Step 2: Multiply both sides by $\frac{10}{3}$
$\left(\frac{10}{3}\right)×\left(\frac{3}{10}y\right)=\left(\frac{10}{3}\right)×\left(\frac{1}{4}\right)$
$y=\frac{5}{6}$

karton

Step 1
Given: $\frac{y}{2}-\frac{y}{5}=\frac{1}{4}$
Multiply by LCM
$\frac{y}{2}×20-\frac{y}{5}×20=\frac{1}{4}×20$
Step 2
Simplify:
$\frac{y}{2}×20$
$=\frac{y×20}{2}=10y$
Step 3
$-\frac{y}{5}×20$
$=-\frac{y×20}{5}=-4y$
Step 4
$\frac{1}{4}×20$
Convert element to fraction:
$=\frac{1}{4}×\frac{20}{1}$
Cross - cancel common factor:
$=\frac{5}{1}$
Apply the fraction rule:
$10y-4y=5$
$6y=5$
Divide both sides by 6
$\frac{6y}{6}=\frac{5}{6}$
Simplify
$y=\frac{5}{6}$
Decimal: y=0.83333

Do you have a similar question?