elvishwitchxyp

2021-12-20

What is the answer to this quadratic:

$0=-2{a}^{2}\pm 2b-12$

$-2{a}^{2}+2b-12=0$

censoratojk

Beginner2021-12-21Added 46 answers

Step 1

$2{a}^{2}+2b-12=0$ is not a solvable quadratic. I will assume you meant

$2{x}^{2}+2x-12$

The quadratic formula is:

$\frac{-b\pm \sqrt{{b}^{2}-\left(4ac\right)}}{2a}$

$\frac{-2\pm \sqrt{{2}^{2}-(4\times 2-12)}}{2\times 2}$

$\frac{-2\pm \sqrt{4-(-96)}}{4}$

$\frac{-2\pm \sqrt{100}}{4}$

$\frac{-2\pm 10}{4}$

$\frac{12}{4}$ or $\frac{8}{4}$

The answer is$x=3$ or $x=2$

The quadratic formula is:

The answer is

Navreaiw

Beginner2021-12-22Added 34 answers

Step 1

Given equation:$2{a}^{2}+2b-12=0$

Quadratic equations like this one, with an$x}^{2$ term but no x term, can still be solved using the quadratic formula, $\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}$ , once they are put in standard form: $a{x}^{2}+bx+c=0$

This equation is in standard form:$a{x}^{2}+bx+c=0$

Substitute 2 for a, 0 fro b, and$-12+2b$ for c in the quadratic formula, $\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}$

$a=\frac{0\pm \sqrt{{0}^{2}-4\times 2(2b-12)}}{2\times 2}$

Square 0

$a=\frac{0\pm \sqrt{-4\times 2(2b-12)}}{2\times 2}$

Multiply -4 times 2

$a=\frac{0\pm \sqrt{-8(2b-12)}}{2\times 2}$

Multiply -8 times$-12+2b$

$a=\frac{0\pm \sqrt{96-16b}}{2\times 2}$

Take the square root of$96-16b$

$a=\frac{0\pm 4\sqrt{6-b}}{2\times 2}$

Multiply 2 times 2

$a=\frac{0\pm 4\sqrt{6-b}}{4}$

Now solve the equation$a=\frac{0\pm 4\sqrt{6-b}}{4}$ when $\pm$ is plus and minus

$a=\sqrt{6-b}$

$a=-\sqrt{6-b}$

Given equation:

Quadratic equations like this one, with an

This equation is in standard form:

Substitute 2 for a, 0 fro b, and

Square 0

Multiply -4 times 2

Multiply -8 times

Take the square root of

Multiply 2 times 2

Now solve the equation

RizerMix

Skilled2021-12-29Added 437 answers

Step 1

Subtract

Add 12 to both sides

The equation is in standard form.

Divide both sides by 2

Dividing by 2 undoes the multiplication by 2.

Divide