Ava-May Nelson

2021-08-13

Given R(2,1), S(2,3), T(6,3), U(6,4), V(8,4)

Compare the slope of segment$\stackrel{\u2015}{RT}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\stackrel{\u2015}{TV}$

Compare the slope of segment

tabuordy

Skilled2021-08-14Added 90 answers

Segment RT:

$\frac{\stackrel{\u2015}{RS}}{\stackrel{\u2015}{ST}}=\left|\frac{R-S}{S-T}\right|=\left|\frac{2-2+1-3}{2-6+3-3}\right|=\left|\frac{-2}{-4}\right|=\frac{1}{2}$

Segment TV:

$\frac{\stackrel{\u2015}{TU}}{\stackrel{\u2015}{UV}}=\left|\frac{T-U}{U-V}\right|=\left|\frac{6-6+3-4}{6-8+4-4}\right|=\left|\frac{-1}{-2}\right|=\frac{1}{2}$

Since$\frac{\stackrel{\u2015}{RS}}{\stackrel{\u2015}{ST}}=\frac{1}{2}{\textstyle \phantom{\rule{1em}{0ex}}}\text{and}{\textstyle \phantom{\rule{1em}{0ex}}}\frac{\stackrel{\u2015}{TU}}{\stackrel{\u2015}{UV}}=\frac{1}{2}$ , the answer is:

The slope segment of segment RT is equal to the slope segment of TV.

Segment TV:

Since

The slope segment of segment RT is equal to the slope segment of TV.