aqkuax86xp0o

2023-02-18

How to write the slope intercept form of the line $6x+5y=-15$?

Aleksy7860

Beginner2023-02-19Added 6 answers

The linear equation's slope-intercept form is:

$y={m}x+{b}$

Where $m$ is the slope and $b$ is the y-intercept value.

For $y$, we must resolve the following equation:

$6x+5y=-15$

$6x-{6x}+5y=-{6x}-15$

$0+5y=-6x-15$

$5y=-6x-15$

$\frac{5y}{{5}}=\frac{-6x-15}{{5}}$

$\frac{{\overline{){5}}}y}{\overline{){5}}}=\frac{-6x}{5}-\frac{15}{5}$

Our final answer is

$y=-\frac{6}{5}x-3$

$y={m}x+{b}$

Where $m$ is the slope and $b$ is the y-intercept value.

For $y$, we must resolve the following equation:

$6x+5y=-15$

$6x-{6x}+5y=-{6x}-15$

$0+5y=-6x-15$

$5y=-6x-15$

$\frac{5y}{{5}}=\frac{-6x-15}{{5}}$

$\frac{{\overline{){5}}}y}{\overline{){5}}}=\frac{-6x}{5}-\frac{15}{5}$

Our final answer is

$y=-\frac{6}{5}x-3$