# 6^2 = A. 36 B. 12 C. 66 D. 30

Question
$$\displaystyle{6}^{{2}}$$
=
A. 36
B. 12
C. 66
D. 30

2020-11-03
Generally, $$\displaystyle{a}^{{n}}$$ means that you multiply a by itself n times. Hence, $$\displaystyle{6}^{{2}}$$ means $$\displaystyle{6}\cdot{6}={36}$$. So, correct answer is choice A.

### Relevant Questions

Simplify sqrt-54 using the imaginary number i
A) $$\displaystyle{3}{i}\sqrt{{6}}$$
B) $$\displaystyle-{3}\sqrt{{6}}$$
C) $$\displaystyle{i}\sqrt{{54}}$$
D) $$\displaystyle{3}\sqrt{-}{6}$$
If $$\displaystyle{s}≥{0}$$, then $$\displaystyle√{s}^{{2}}$$ is equal to
O A. 0
O B. 1
O c. −s
O D. s
Simplify each of the following expressions. Be sure that your answer has no negative or fractional exponents. $$a*(1/81)^(-1/4)b*x^(-2)y^(-4)c*(2x)^(-2)(16x^2y)^(1/2)$$
Radical and Exponents Simplify the expression $$\frac{(ab^2 c^-3}{2a^3 b^-4)}^{-2}$$
An automobile tire manufacturer collected the data in the table relating tire pressure x​ (in pounds per square​ inch) and mileage​ (in thousands of​ miles). A mathematical model for the data is given by
$$\displaystyle​ f{{\left({x}\right)}}=-{0.554}{x}^{2}+{35.5}{x}-{514}.$$
$$\begin{array}{|c|c|} \hline x & Mileage \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}$$
​(A) Complete the table below.
$$\begin{array}{|c|c|} \hline x & Mileage & f(x) \\ \hline 28 & 45 \\ \hline 30 & 51\\ \hline 32 & 56\\ \hline 34 & 50\\ \hline 36 & 46\\ \hline \end{array}$$
​(Round to one decimal place as​ needed.)
$$A. 20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,45), (30,51), (32,56), (34,50), and (36,46). A parabola opens downward and passes through the points (28,45.7), (30,52.4), (32,54.7), (34,52.6), and (36,46.0). All points are approximate.
$$B. 20602060xf(x)$$
Acoordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2.
Data points are plotted at (43,30), (45,36), (47,41), (49,35), and (51,31). A parabola opens downward and passes through the points (43,30.7), (45,37.4), (47,39.7), (49,37.6), and (51,31). All points are approximate.
$$C. 20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (43,45), (45,51), (47,56), (49,50), and (51,46). A parabola opens downward and passes through the points (43,45.7), (45,52.4), (47,54.7), (49,52.6), and (51,46.0). All points are approximate.
$$D.20602060xf(x)$$
A coordinate system has a horizontal x-axis labeled from 20 to 60 in increments of 2 and a vertical y-axis labeled from 20 to 60 in increments of 2. Data points are plotted at (28,30), (30,36), (32,41), (34,35), and (36,31). A parabola opens downward and passes through the points (28,30.7), (30,37.4), (32,39.7), (34,37.6), and (36,31). All points are approximate.
​(C) Use the modeling function​ f(x) to estimate the mileage for a tire pressure of 29
$$\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$ and for 35
$$\displaystyle​\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$
The mileage for the tire pressure $$\displaystyle{29}\frac{{{l}{b}{s}}}{{{s}{q}}}\in.$$ is
The mileage for the tire pressure $$\displaystyle{35}\frac{{{l}{b}{s}}}{{{s}{q}}}$$ in. is
(Round to two decimal places as​ needed.)
(D) Write a brief description of the relationship between tire pressure and mileage.
A. As tire pressure​ increases, mileage decreases to a minimum at a certain tire​ pressure, then begins to increase.
B. As tire pressure​ increases, mileage decreases.
C. As tire pressure​ increases, mileage increases to a maximum at a certain tire​ pressure, then begins to decrease.
D. As tire pressure​ increases, mileage increases.
Express the fraction $$\displaystyle\frac{{1}}{{6}^{{4}}}$$ using negative exponent.
The article “Anodic Fenton Treatment of Treflan MTF” describes a two-factor experiment designed to study the sorption of the herbicide trifluralin. The factors are the initial trifluralin concentration and the $$\displaystyle{F}{e}^{{{2}}}\ :\ {H}_{{{2}}}\ {O}_{{{2}}}$$ delivery ratio. There were three replications for each treatment. The results presented in the following table are consistent with the means and standard deviations reported in the article. $$\displaystyle{b}{e}{g}\in{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}\text{Initial Concentration (M)}&\text{Delivery Ratio}&\text{Sorption (%)}\ {15}&{1}:{0}&{10.90}\quad{8.47}\quad{12.43}\ {15}&{1}:{1}&{3.33}\quad{2.40}\quad{2.67}\ {15}&{1}:{5}&{0.79}\quad{0.76}\quad{0.84}\ {15}&{1}:{10}&{0.54}\quad{0.69}\quad{0.57}\ {40}&{1}:{0}&{6.84}\quad{7.68}\quad{6.79}\ {40}&{1}:{1}&{1.72}\quad{1.55}\quad{1.82}\ {40}&{1}:{5}&{0.68}\quad{0.83}\quad{0.89}\ {40}&{1}:{10}&{0.58}\quad{1.13}\quad{1.28}\ {100}&{1}:{0}&{6.61}\quad{6.66}\quad{7.43}\ {100}&{1}:{1}&{1.25}\quad{1.46}\quad{1.49}\ {100}&{1}:{5}&{1.17}\quad{1.27}\quad{1.16}\ {100}&{1}:{10}&{0.93}&{0.67}&{0.80}\ {e}{n}{d}{\left\lbrace{m}{a}{t}{r}{i}{x}\right\rbrace}$$ a) Estimate all main effects and interactions. b) Construct an ANOVA table. You may give ranges for the P-values. c) Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value.
A small grocer finds that the monthly sales y (in $) can be approximated as a function of the amount spent advertising on the radio $$x_1$$ (in$) and the amount spent advertising in the newspaper $$x_2$$ (in $) according to $$y=ax_1+bx_2+c$$ The table gives the amounts spent in advertising and the corresponding monthly sales for 3 months. $$\begin{array}{|c|c|c|}\hline \text { Advertising, } x_{1} & \text { Advertising, } x_{2} &\text{sales, y} \\ \hline 2400 & { 800} & { 36,000} \\ \hline 2000 & { 500} & { 30,000} \\ \hline 3000 & { 1000} & { 44,000} \\ \hline\end{array}$$ a) Use the data to write a system of linear equations to solve for a, b, and c. b) Use a graphing utility to find the reduced row-echelon form of the augmented matrix. c) Write the model $$y=ax_1+bx_2+c$$ d) Predict the monthly sales if the grocer spends$250 advertising on the radio and \$500 advertising in the newspaper for a given month.
Simplify: $$\displaystyle{\left({7}^{{5}}\right)}{\left({4}^{{5}}\right)}$$. Write your answer using an exponent.
Explain in words how to simplify: $$\displaystyle{\left({153}^{{2}}\right)}^{{7}}.$$
Is the statement $$\displaystyle{\left({10}^{{5}}\right)}{\left({4}^{{5}}\right)}={14}^{{5}}$$ true?