# Each of 5 friends has x action figures in his or her collection. Each friend buys 11 more action figures. Now the 5 friends have a total of 120 action figures. a. Write an equation that models the problem. b. Solve the equation to find the number of action figures, x, that each friend had originally.

Question
Equations and inequalities
Each of 5 friends has x action figures in his or her collection. Each friend buys 11 more action figures. Now the 5 friends have a total of 120 action figures.
a. Write an equation that models the problem.
b. Solve the equation to find the number of action figures, x, that each friend had originally.

2021-02-06
a.If each friend buys 11 more action figures, then each will have x+11 action figures. Since the total action figures is 120, we can write th equation: 5(x+11)=120
b. Solve for x. Divide both sides by 5: x+11=24
Subtract 11 from both sides: x=13
Each friend originally had 13 action figures each.

### Relevant Questions

Carlos has at least as many action figures in his collection as Josh. Carlos has 5 complete sets plus 4 individual figures. Josh has 3 complete sets plus 14 individual figures. Which inequality represents how many action figures can be in a complete set?
Celine, Devon, and another friend want to purchase some snacks that cost a total of $7.50. They will share the cost of the snacks. Which of these statements is true? A. An equation that can be used to find x, the amount of money each person will pay is x+3=7.5. The solution to the equation is 4.5, so each person will pay$4.50.
B. An equation that can be used to find x, the amount of money each person will pay is x+3=7.5. The solution to the equation is 10.5, so each person will pay $10.50. C. An equation that can be used to find x, the amount of money each person will pay is x⋅3=7.5. The solution to the equation is 2.5, so each person will pay$2.50.
D. B. An equation that can be used to find x, the amount of money each person will pay is x⋅3=7.5. The solution to the equation is 22.5, so each person will pay $22.50. asked 2020-10-23 The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem. Suspect was Armed: Black - 543 White - 1176 Hispanic - 378 Total - 2097 Suspect was unarmed: Black - 60 White - 67 Hispanic - 38 Total - 165 Total: Black - 603 White - 1243 Hispanic - 416 Total - 2262 Give your answer as a decimal to at least three decimal places. a) What percent are Black? b) What percent are Unarmed? c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$ This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other). Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed). Remember, the previous answer is only correct if the variables are Independent. d) Now let's get the real percent that are Black and Unarmed by using the table? If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course. Let's compare the percentage of unarmed shot for each race. e) What percent are White and Unarmed? f) What percent are Hispanic and Unarmed? If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white. Why is that? This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage. Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group. g) What percent of blacks shot and killed by police were unarmed? h) What percent of whites shot and killed by police were unarmed? i) What percent of Hispanics shot and killed by police were unarmed? You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police. j) Why do you believe this is happening? Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date. asked 2020-12-25 Case: Dr. Jung’s Diamonds Selection With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring. After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung. 1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest? 2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why? 3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics? 4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase? 5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why? 1 6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics? 7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase? 8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why? 9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics? 10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase? asked 2021-03-05 To find the lowest original score that will result in an A if the professor uses $$(i)(f*g)(x)\ and\ (ii)(g*f)(x)$$. Professor Harsh gave a test to his college algebra class and nobody got more than 80 points (out of 100) on the test. One problem worth 8 points had insufficient data, so nobody could solve that problem. The professor adjusted the grades for the class by a. Increasing everyone's score by 10% and b. Giving everyone 8 bonus points c. x represents the original score of a student asked 2021-02-22 Solve each problem by writing and solving a one-variable equation. In the first three innings of a baseball game, the home team scored some runs. In the rest of the game, they Scored 5 runs more than the number of runs scored in the first three innings. If the home team scored 9 runs in all, how many runs did they score during the first three innings? How many runs did they score in the remainder of the game? Let x = the runs scored in the first three innings asked 2020-10-23 1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are$42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance. asked 2021-02-24 During the 2014 to 2015 NHL season Henrik Sedin of the Vancouver Canucks had a total of 12 less than 1/2 the number of shots on goal than his brother Daniel. If Henrik had 101 shots on goal how many did Daniel have? asked 2021-01-22 Colin and Shaina wish to buy a gift for a friend. They combine their money and find they have$4.00, consisting of quarters, dimes, and nickels. If they have 35 coins and the number of quarters is half the number of nickels, how many quarters do they have?
You and your friend are saving for a vacation. You start with the same amount and save for the same number of weeks. You save $75 per week, and your friend saves$50 per week. When the vacation time comes, you have $950, and your friend has$800. How much did you start with, and for how many weeks did you save?
A. $150, 8 weeks B.$75, 3 weeks
C. $500, 5 weeks D.$500, 6 weeks