1. Find each of the requested values for a population with a mean of \(? = 40\), and a
standard deviation of \(? = 8\)
A. What is the z-score corresponding to \(X = 52?\)
B. What is the X value corresponding to \(z = - 0.50?\)
C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores?
D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores?
E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores?
2. True or false:
a. All normal distributions are symmetrical
b. All normal distributions have a mean of 1.0
c. All normal distributions have a standard deviation of 1.0
d. The total area under the curve of all normal distributions is equal to 1
3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\)
4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\).
5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.