# Elleana is planning to join a DVD club and is investigating the options for membership. Option 1 is a $20 membership fee and$1.25 rental charge for each DVD rented. Option 2 has no rental fee and charges $2.50 for each DVD rented. How many DVDs would Elleanna have to rent in order for the total cost of Option 1 to be equal to Option 2? Question Linear equations and graphs asked 2021-01-17 Elleana is planning to join a DVD club and is investigating the options for membership. Option 1 is a$20 membership fee and $1.25 rental charge for each DVD rented. Option 2 has no rental fee and charges$2.50 for each DVD rented. How many DVDs would Elleanna have to rent in order for the total cost of Option 1 to be equal to Option 2?

2021-01-18
Let y be the total cost and x be the DVD's rented. Option 1 has a total cost of:
y=20+1.25x
Option 2 has a total cost of:
y=2.50x
Equate the two costs and solve for x:
2.50x=20+1.25x
1.25x=20
x=16
So, Elleana has to rent 16 DVD's in order for the total cost of Option 1 to be equal to Option 2.

### Relevant Questions

To print his first novel, Shane can use a print-on-demand book printer or he can buy a printer. The book printer charges a setup fee of $150 plus$6 per copy of the book. The printer he would need costs $750, and it would cost$2 per copy to print the book. For how many copies are the costs the same?
A yoga studio charges a $36 membership fee and a$20.60 per month for 10 classes. A Martial Arts studio charges a $20 membership fee and$22.20 per month for 10 classes. Your friend belongs to the yoga studio the same month you belong to the Martial Arts studio. After how many months is your friend's total cost the same as your total cost?
The mill Mountain Coffee shop blends coffee on the premises for its customers. it sells three basic blends in 1- pound bags, Special , Mountain dark, and Mill regular. It uses four different types of coffee to produce the blends- Brazilian, mocha,Columbian, and mild. The shop used the following blend recipe requirements :
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{l}\right|}{l}{\left|{l}\right|}\right\rbrace}{h}{l}\in{e}\text{Blend}&\text{Mix requirement}&\text{Selling price/lb(\\)}\backslash{h}{l}\in{e}\text{special}&\text{at least 40% columbian,}&{6.50}\backslash&\text{at least 30% mocha}\backslash{h}{l}\in{e}\text{Dartk}&\text{at least 60% Brazillian}&{5.25}\backslash&\text{no more than 10% mid}\backslash{h}{l}\in{e}\text{Regular}&\text{no more than 60% mid}&{3.75}\backslash&\text{at least 30% Brazillian}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$
The cost of Brazilian coffee is 2.00 per pound, the cost of mocha is $2.75 per pound, the cost of Columbian is$2.90 per pound,and the cost of mild is $1.70 per pound. The shop has 110 pounds of Brazilan coffee. 70 pounds of mocha, 80 pounds of Columbian, and 150 pounds of mild coffee available per week. The shop wants to know the amount of each blend it should prepare each week to maximize profit. a. Formulate a linear programming model b. Solve this model asked 2020-10-23 1. Find each of the requested values for a population with a mean of $$? = 40$$, and a standard deviation of $$? = 8$$ A. What is the z-score corresponding to $$X = 52?$$ B. What is the X value corresponding to $$z = - 0.50?$$ C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of $$M=42$$ for a sample of $$n = 4$$ scores? E. What is the z-scores corresponding to a sample mean of $$M= 42$$ for a sample of $$n = 6$$ scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: $$a. -2.00 b. 1.25 c. 3.50 d. -0.34$$ 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with $$\mu = 78$$ and $$\sigma = 12$$. Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: $$82, 74, 62, 68, 79, 94, 90, 81, 80$$. 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are$42 on average but vary about $$12 (\mu = 42, \sigma = 12)$$. You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the $$\alpha = 0.05$$ level of significance. asked 2021-03-02 Adult tickets to a play cost$22. Tickets for children cost $15. Tickets for a group of 11 people cost a total of$228. Write and solve a system of equations to find how many children and how many adults were in the group.
A small drugstore orders copies of a certain magazine for it magazine rack each week. Let X=demand for the magazine, with pmf
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{l}\right|}{l}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{1}&{2}&{3}&{4}&{5}&{6}\backslash{h}{l}\in{e}{p}{\left({x}\right)}&{\frac{{{1}}}{{{15}}}}&{\frac{{{2}}}{{{15}}}}&{\frac{{{3}}}{{{15}}}}&{\frac{{{4}}}{{{15}}}}&{\frac{{{5}}}{{{15}}}}&{\frac{{{6}}}{{{15}}}}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$
Suppose the store owner actually pays $1.00 for each copy of the magazine and the price to customers is$2.00. If magazines left at the end of the week have no salvage value, is it better to order three or four copies of the magazine?
The owner of a large equipment rental company wants to make a rather quick estimate of the average number of days a piece of ditch-digging equipment is rented out per person per time. The company has records of all rentals, but the amount of time required to conduct an audit of all accounts would be prohibitive. The owner decides to take a random sample of rental invoices. Fourteen different rentals of ditch-diggers are selected randomly from the files, yielding the following data. She wants to use these data to construct a $$99\%$$ confidence interval to estimate the average number of days that a ditch-digger is rented and assumes that the number of days per rental is normally distributed in the population. Use only the appropriate formula and/or statistical table in your textbook to answer this question. Report your answer to 2 decimal places, using conventional rounding rules.
DATA: 3 1 3 2 5 1 2 1 4 2 1 3 1 1
A concert promoter produces two kinds of souvenir shirt, one kind sells for $18 ad the other for$25. The company determines, the total cost, in thousands of dollars, of producting x thousand of the $18 shirt and y thousand of the$25 shirt is given by
$$\displaystyle{C}{\left({x},{y}\right)}={4}{x}^{{2}}-{6}{x}{y}+{3}{y}^{{2}}+{20}{x}+{19}{y}-{12}.$$
How many of each type of shirt must be produced and sold in order to maximize profit?
Looking around in your own country, discuss one practical application in which “piecewise functions” are used either explicitly or implicitly.
Example to be used- A paid parking lot based on length of time stayed, up to half an hour cost $1, over half an hour up to an hour cost$2.50 and over an hour and up to 15 hours cost \$20.
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
...