Question

∫((y^2)/(x^2y+y^3))dx

Applications of integrals
ANSWERED
asked 2021-02-05
\(\displaystyle∫{\left(\frac{{{y}^{{2}}}}{{{x}^{{2}}{y}+{y}^{{3}}}}\right)}{\left.{d}{x}\right.}\)

Answers (1)

2021-02-06

\(∫((y^2)/(x^2y+y^3))dx=y∫(1/(y^2+x^2))dx =y*1/y\tan^-1(x/y)\)
\(\displaystyle:∫{\left(\frac{{1}}{{{x}^{{2}}+{a}^{{2}}}}\right)}{\left.{d}{x}\right.}=\frac{{1}}{{\arctan{{\left(\frac{{x}}{{a}}\right)}}}}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...