$\mathrm{\Psi}({x}_{1},{x}_{2})=-\mathrm{\Psi}({x}_{2},{x}_{1})$

If we assume that we can factorize the wave function in terms of single particle wave functions we can write

$\mathrm{\Psi}({x}_{1},{x}_{2})={\psi}_{1}({x}_{1}){\psi}_{2}({x}_{2})-{\psi}_{1}({x}_{1}){\psi}_{2}({x}_{2})$

which fulfills the anti-symmetry requirement. The plane wave single particle states are given by,

${\psi}_{\mathbf{k},{m}_{s}}(x)={u}_{\mathbf{k},{m}_{s}}(s)\varphi (\mathbf{k}\cdot \mathbf{r})$

So expect the total wavefunction to be

$\begin{array}{rl}\mathrm{\Psi}({x}_{1},{x}_{2})& ={u}_{{\mathbf{k}}_{1},{m}_{{s}_{1}}}({s}_{1})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{1}){u}_{{\mathbf{k}}_{2},{m}_{{s}_{2}}}({s}_{2})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{2})-{u}_{{\mathbf{k}}_{1},{m}_{{s}_{1}}}({s}_{2})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{2}){u}_{{\mathbf{k}}_{2},{m}_{{s}_{2}}}({s}_{1})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{1})\\ & ={u}_{{\mathbf{k}}_{1},{m}_{{s}_{1}}}({s}_{1}){u}_{{\mathbf{k}}_{2},{m}_{{s}_{2}}}({s}_{2})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{1})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{2})-{u}_{{\mathbf{k}}_{1},{m}_{{s}_{1}}}({s}_{2}){u}_{{\mathbf{k}}_{2},{m}_{{s}_{2}}}({s}_{1})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{2})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{1})\end{array}$

However

$u({\mathbf{k}}_{1},{m}_{{s}_{1}})u({\mathbf{k}}_{2},{m}_{{s}_{2}})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{1})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{2})-u({\mathbf{k}}_{2},{m}_{{s}_{2}})u({\mathbf{k}}_{1},{m}_{{s}_{1}})\varphi ({\mathbf{k}}_{1}\cdot {\mathbf{r}}_{2})\varphi ({\mathbf{k}}_{2}\cdot {\mathbf{r}}_{1})$

If I'm not mistaking one cannot freely change the order of the Dirac spinors $u({\mathbf{k}}_{1},{m}_{{s}_{1}})u({\mathbf{k}}_{2},{m}_{{s}_{2}})\ne u({\mathbf{k}}_{2},{m}_{{s}_{2}})u({\mathbf{k}}_{1},{m}_{{s}_{1}})$ so these expressions seem to be uncompatible. What would the correct expression look like?