Which of the following is an equation of the line that has a y-intercept of 2 and an x-intercept of 3? (a) -2x + 3y = 4 (b) -2x + 3y = 6 (c) 2x + 3y = 4 (d) 2x + 3y = 6 (e) 3x + 2y = 6

asked 2021-01-28
Which of the following is an equation of the line that has a y-intercept of 2 and an x-intercept of 3?
(a) -2x + 3y = 4
(b) -2x + 3y = 6
(c) 2x + 3y = 4
(d) 2x + 3y = 6
(e) 3x + 2y = 6

Answers (1)

A line in intercept form is given by \(\displaystyle\frac{{x}}{{a}}+\frac{{y}}{{b}}={1}\) where a is the x intercept and b is the y-intercept. So, we can write: \(\displaystyle\frac{{x}}{{3}}+\frac{{y}}{{2}}={1}\)
Multiply both sides by 6, the LCD: 2x+3y=6
So, the correct answer is choice (d)

Relevant Questions

asked 2021-01-28
Whch of the two functions below has the smallest minimum y-value?
\(f(x)=4(x-6)^4+1, g(x)=2x^3+28\).
A.There is not enough information to determine.
B. g(x)
D. The extreme minimum y-value for f(x)and g(x)is - infinity.
asked 2021-01-10
the function that has an x-intercept of -2 and a y-intercept of \(\displaystyle−{\left(\frac{{2}}{{3}}\right)}\)
asked 2021-02-02
Which equation does not represent a line with an x-intercept of 3?
(A) y=−2x+6
(B) y=−13x+1
(C) y=23x−2
(D) y=3x−1
asked 2020-11-10
Find the derivative of \(\displaystyle{\cos{
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-02-05
Let C be the ellipse contained in the xy plane whose equation is \(\displaystyle{4}{x}^{{2}}+{y}^{{2}}={4}\), oriented clockwise. The force field F described by \(\displaystyle{F}{\left({x},{y},{z}\right)}={x}^{{2}}{i}+{2}{x}{j}+{z}^{{2}}{k}\), moves a particle along C in the same direction as the curve orientation, performing a W job. C as the surface boundary S: \(\displaystyle{z}={4}-{4}{x}^{{2}}-{y}^{{2}},{z}\ge{0}\) (with ascending orientation, that is, the component in the z direction equal to 1) and assuming \(\displaystyle\pi={3.14}\), we can state what:
a) It is not necessary to apply Stokes' Theorem, as C is a closed curve and therefore W = 0.
b) Inverting the orientation of the surface S, we can apply Stokes' Theorem and conclude that W = 12.56.
c) We can apply Stokes' Theorem and conclude that W = 6.28
d) We can apply Stokes' Theorem and conclude that W = 12.56.
asked 2021-02-11
Your friend attempted to describe the transformations applied to the graph of \(y=sinx\) to give the equation \(f(x)=1/2sin(-1/3(x+30))+1\).
They think the following transformations have been applied. Which transformations have been identified correctly, and which have not? Justify your answer.
a) f(x) has been reflected vertically.
b) f(x) has been stretched vertically by a factor of 2.
c) f(x) has been stretched horizontally by a factor of 3.
d) f(x) has a phase shift left 30 degrees.
e) f(x) has been translated up 1 unit.
asked 2021-03-05
1. A curve is given by the following parametric equations. x = 20 cost, y = 10 sint. The parametric equations are used to represent the location of a car going around the racetrack. a) What is the cartesian equation that represents the race track the car is traveling on? b) What parametric equations would we use to make the car go 3 times faster on the same track? c) What parametric equations would we use to make the car go half as fast on the same track? d) What parametric equations and restrictions on t would we use to make the car go clockwise (reverse direction) and only half-way around on an interval of [0, 2?]? e) Convert the cartesian equation you found in part “a” into a polar equation? Plug it into Desmos to check your work. You must solve for “r”, so “r = ?”
asked 2020-12-27
The scatter plot below shows the average cost of a designer jacket in a sample of years between 2000 and 2015. The least squares regression line modeling this data is given by \(\widehat{y}=-4815+3.765x.\) A scatterplot has a horizontal axis labeled Year from 2005 to 2015 in increments of 5 and a vertical axis labeled Price ($) from 2660 to 2780 in increments of 20. The following points are plotted: \((2003, 2736), (2004, 2715), (2007, 2675), (2009, 2719), (2013, 270)\). All coordinates are approximate. Interpret the y-intercept of the least squares regression line. Is it feasible? Select the correct answer below: The y-intercept is −4815, which is not feasible because a product cannot have a negative cost. The y-intercept is 3.765, which is not feasible because an expensive product such as a designer jacket cannot have such a low cost. The y-intercept is −4815, which is feasible because it is the value from the regression equation. The y-intercept is 3.765 which is feasible because a product must have a positive cost.
asked 2020-12-22
Determine which of the following are linear inequalities and linear equations.Write LI if the sentence is linear inequality and LE if it is linear equation
4.\(3s >= t+1\)