Question

log5*5^4

Logarithms
ANSWERED
asked 2020-11-27
\(\displaystyle{\log{{5}}}\cdot{5}^{{4}}\)

Answers (1)

2020-11-28

We are given: \(\displaystyle{\log{{5}}}\cdot{5}^{{4}}\)
Let \(y=\log5\cdot5^{4}\ \text{and write in exponential for m}:\log bx=a\to b^{a}=x\)
\(\displaystyle{5}^{{y}}={5}^{{4}}\)
Equating exponents, we have: \(y=4\)
Hence, \(\displaystyle{\log{{5}}}\cdot{5}^{{4}}={4}\)

0
 
Best answer

expert advice

Need a better answer?
...