We are given:

\(\displaystyle{\log{

\(\displaystyle{\log{

Question

asked 2021-01-02

Solve for x.
\(\displaystyle{\log{{7}}}{\left({x}+{6}\right)}={0}\)

asked 2021-01-16

Write in exponential form.

\(\displaystyle{\log{{3}}}{1}={0}\)

\(\displaystyle{\log{{3}}}{1}={0}\)

asked 2021-02-16

How to solve
\(\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}\)

asked 2021-03-08

Find
\(\displaystyle{\log{{5}}}{\left({0.0016}\right)}\)

asked 2021-02-02

Solve:
\(\displaystyle{\log{{6}}}{x}={0.5}{\log{{6}}}{36}\)

asked 2021-01-15

Solve the equation and find the exact solution:

\(\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}\)

\(\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}\)

asked 2021-03-07

solve the equation \(\displaystyle{\log{{\left({b}{a}{s}{e}{16}\right)}}}{\left({3}{x}-{1}\right)}={\log{{\left({b}{a}{s}{e}{4}\right)}}}{\left({3}{x}\right)}+{\log{{\left({b}{a}{s}{e}{4}\right)}}}{0.5}\)?

asked 2021-01-25

Solve for x using \(\log50=600e^{-0.4x}\)

asked 2020-12-06

Use the logarithmic differentiation of the following. \(f(x)=x^{x}\)

asked 2020-12-25

Solve the equations and inequalities:
\(\frac{2^{x}}{3}\leq\frac{5^{x}}{4}\)