# log₁₅ w = 0 Question
Logarithms $$\displaystyle{\log{ ## Answers (1) 2021-02-27 We are given: \(\displaystyle{\log{ ### Relevant Questions asked 2021-01-02 Solve for x. \(\displaystyle{\log{{7}}}{\left({x}+{6}\right)}={0}$$ Write in exponential form.
$$\displaystyle{\log{{3}}}{1}={0}$$ How to solve $$\displaystyle{\log{{50}}}+{\log{{\left(\frac{{x}}{{2}}\right)}}}={0}$$ Find $$\displaystyle{\log{{5}}}{\left({0.0016}\right)}$$ Solve: $$\displaystyle{\log{{6}}}{x}={0.5}{\log{{6}}}{36}$$ Solve the equation and find the exact solution:
$$\displaystyle{\log{{b}}}{a}{s}{e}{2}{\left({\log{{b}}}{a}{s}{e}{3}{\left({\log{{b}}}{a}{s}{e}{4}{\left({x}\right)}\right)}\right)}={0}$$ solve the equation $$\displaystyle{\log{{\left({b}{a}{s}{e}{16}\right)}}}{\left({3}{x}-{1}\right)}={\log{{\left({b}{a}{s}{e}{4}\right)}}}{\left({3}{x}\right)}+{\log{{\left({b}{a}{s}{e}{4}\right)}}}{0.5}$$? Solve for x using $$\log50=600e^{-0.4x}$$ Use the logarithmic differentiation of the following. $$f(x)=x^{x}$$ Solve the equations and inequalities: $$\frac{2^{x}}{3}\leq\frac{5^{x}}{4}$$