# x² - 5x = 18 + 2x

Question
$$\displaystyle{x}²-{5}{x}={18}+{2}{x}$$

2021-01-07
We are given: $$\displaystyle{x}²-{5}{x}={18}+{2}{x}$$
Write in the form $$\displaystyle{a}{x}²+{b}{x}+{c}={0}$$
$$\displaystyle{x}²-{7}{x}-{18}={0}$$
Factor the left side: (x+2)(x-9)=0
By zero product property, x+2=0 and x-9=0
x=-2 and x=9

### Relevant Questions

Explain how to complete the square for an expression of the form x²+bx.
Add __ to $$\displaystyle{x}²+{b}{x}.$$
Simplify: $$\displaystyle{2}\sqrt{{{8}}}\sqrt{{{18}}}$$
Use the Quadratic Formula to solve $$\displaystyle{8}{x}^{{2}}−{24}{x}+{18}={0}.$$
Solve the following quadratic equation $$\displaystyle{3}{x}^{{2}}+{5}{x}+{2}={0}$$
Solve quadratic equation using the quadratic formula. $$\displaystyle{x}^{{2}}+{5}{x}+{2}={0}$$
Factoring is used to solve quadratics of the form $$\displaystyle{a}{x}^{{2}}+{b}{x}+{c}={0}$$ when th eroots are rational. Find the roots of the following quadratic functions by factoring:
a) $$\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}-{5}{x}-{14}$$
b) $$\displaystyle{f{{\left({x}\right)}}}={x}^{{2}}-{64}$$
c) $$\displaystyle{f{{\left({x}\right)}}}{6}{x}^{{2}}+{7}{x}-{3}$$
Solve the quadratic equation using the quadratic formula. $$\displaystyle{2}{x}^{{2}}-{6}{x}+{5}={0}$$
$$\displaystyle{f{{\left({x}\right)}}}={\left({2}{x}−{1}\right)}\cdot{\left({x}^{{2}}+{2}{x}−{3}\right)}$$, with $$\displaystyle{x}\in{R}$$
$$\displaystyle\frac{{{x}^{{2}}+{2}{x}-\frac{{3}}{{x}^{{2}}}+{1}{x}-{20}}}{{{x}-\frac{{1}}{{x}}+{5}}}$$