$\frac{Y(s)}{R(s)}=\frac{F(s)G(s)}{1+F(s)G(s)}$

where $F(s)G(s)=K\frac{s+1}{{s}^{2}+s+1}$

Let K=4 and R(s)=10/s. Using the final value theorem, calculate the steady state error of the system.

Now, I thought the error would be given by $\underset{s\to 0}{lim}\frac{10\cdot F(s)G(s)}{1+F(s)G(s)}$, but the solution says to calculate $\frac{10}{1+F(s)G(s)}$. Can anyone explain why?