Question

f(x)=x−3 and g(x)=4x2−3x−9g(x)=4x^2−3x−9. Find composite function f∘g and g∘f

Composite functions
ANSWERED
asked 2021-01-15

f(x)=x−3 and \(\displaystyle{g{{\left({x}\right)}}}={4}{x}{2}−{3}{x}−{9}{g{{\left({x}\right)}}}={4}{x}^{{2}}−{3}{x}−{9}\). Find composite function \(\displaystyle{f}∘{g}\) and \(\displaystyle{g}∘{f}\)

Answers (1)

2021-01-16

We are given: f(x)=x-3 and g(x) = \(\displaystyle{4}{x}^{{2}}-{3}{x}-{9}\)
To find f o g replace x of x by g(x) and simplify:
\((f ∘ g)(x)=f(g(x)) =(4x^2-3x-9)-3 =4x^2-3x-12\)
To find g o f, replace x of g by f(x) and simplify:
\((g ∘ f)(x)=g(f(x)) =4((x-3)^2)-3(x-3)-9 =4(x^2-6x+9)-3(x-3)-9 =4x^2-24x+36-3x+9-9 =4x^2-27x+36\)

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2020-12-25

Let f(x) = \(\displaystyle{4}{x}^{{2}}–{6}\) and \(\displaystyle{g{{\left({x}\right)}}}={x}–{2}.\)
(a) Find the composite function \(\displaystyle{\left({f}\circ{g}\right)}{\left({x}\right)}\) and simplify. Show work.
(b) Find \(\displaystyle{\left({f}\circ{g}\right)}{\left(−{1}\right)}\). Show work.

asked 2021-02-25

Find the composite functions \(\displaystyle{f}\circ{g}\) and \(\displaystyle{g}\circ{f}\). Find the domain of each composite function. Are the two composite functions equal
\(f(x) = 3x + 1\)
\(g(x) = −x\)

asked 2021-03-06

Given \(f(x) = 5x − 5\) and \(g(x) = 5x − 1,\)
Evaluate the composite function \(g[f(0)]\)

asked 2021-02-26

Rewrite the given pair of functions as one composite form
\(\displaystyle{g{{\left({x}\right)}}}=\sqrt{{{5}{x}^{{2}}}}\)
\(\displaystyle{x}{\left({w}\right)}={2}{e}^{{w}}\)
\(g(x(ww))=?\)
Evalute the composite function at 1.
\(g(x(1))=?\)

asked 2021-02-24

For \(f(x)=6/x\) and \(g(x)=6/x\), find the following functions.

a) \((f \cdot g)(x)\)

b) \((g \cdot f)(x)\)

c) \((f \cdot g)(7)\)

d) \((g \cdot f)(7)\)

asked 2020-11-24

Find the domain of the coposite function \(f\circ g\)

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{5}}{{{x}+{9}}}\)
\(g(x)=x+6\)

asked 2020-11-08

The regular price of a computer is x dollars. Let \(f(x) = x - 400\ and\ g(x) = 0.75x\). Solve,
a. Describe what the functions f and g model in terms of the price of the computer.
b. Find \(\displaystyle{\left({f}\circ{g}\right)}{\left({x}\right)}\) and describe what this models in terms of the price of the computer.
c. Repeat part (b) for \(\displaystyle{\left({g}\circ{f}\right)}{\left({x}\right)}\).
d. Which composite function models the greater discount on the computer, \(\displaystyle{f}\circ{g}\) or \(\displaystyle{g}\circ{f}\)?

asked 2021-06-13

Discuss the continuity of the function and evaluate the limit of f(x, y) (if it exists) as \(\displaystyle{\left({x},{y}\right)}\rightarrow{\left({0},{0}\right)}.{f{{\left({x},{y}\right)}}}={1}-{\frac{{{\cos{{\left({x}^{{{2}}}+{y}^{{{2}}}\right)}}}}}{{{x}^{{{2}}}+{y}^{{{2}}}}}}\)

asked 2021-06-20

Use the definition of continuity and the properties of limits to show that the function is continuous on the given interval.
\(\displaystyle{g{{\left({x}\right)}}}={2}\sqrt{{{3}}}-{x},{\left(-\infty,{3}\right]}\)

asked 2021-05-16

Sketch the graph of the function
a) \(f(1)=[[1]]+[[-1]]=1\pm1=0\)

\(f(0)=0\)

\(f(\frac{1}{2})=0\pm1=-1\)

\(f(-2.7)=-3+2=-1\)

b) \(\lim_{x \rightarrow 1}f(x)=-1\)

\(\lim_{x \rightarrow 1+}f(x)=-1\)

\(\lim_{x \rightarrow \frac{1}{2}}f(x)=-1\)

c) f is continuous for all real numbers except \(0,\pm 1,\pm 2,\pm 3, \pm 4\cdots\)

You might be interested in

...