Is my answer correct? Are these two events independent?

$\begin{array}{|ccc|}\hline & A& B\\ C& 78& 520\\ D& 156& 56\\ \hline\end{array}$

This is a contingency table and the question is if D is independent of A.

Now I know that if they are, then $P(A\cap D)=P(A)\cdot P(D)$

So in my case, $P(A\cap D)={\displaystyle \frac{156}{810}}$

$P(A)={\displaystyle \frac{234}{810}}\phantom{\rule[-3ex]{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

$P(D)={\displaystyle \frac{212}{810}}$

$P(A\cap D)=0.19$

$P(A)\cdot P(D)=0.07$

$\begin{array}{|ccc|}\hline & A& B\\ C& 78& 520\\ D& 156& 56\\ \hline\end{array}$

This is a contingency table and the question is if D is independent of A.

Now I know that if they are, then $P(A\cap D)=P(A)\cdot P(D)$

So in my case, $P(A\cap D)={\displaystyle \frac{156}{810}}$

$P(A)={\displaystyle \frac{234}{810}}\phantom{\rule[-3ex]{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}$

$P(D)={\displaystyle \frac{212}{810}}$

$P(A\cap D)=0.19$

$P(A)\cdot P(D)=0.07$