Give an example of a poset which has exactly one maximal element but does not have a greatest element.

Give an example of a poset which has exactly one maximal element but does not have a greatest element.

Discrete math
asked 2021-03-11
Give an example of a poset which has exactly one maximal element but does not have a greatest element.

Answers (1)


Here we consider a poset which has exactly one maximal element but does not have a greatest element.
Recall Minimal and Maximal Element of a Poset: Let \(\displaystyle{\left({S},\le\right)}\) be a poset. An element \(\displaystyle{a}∈{S}\) said to be a minimal element if x \((\displaystyle{x}∈{S})\). An clement \(\displaystyle{b}∈{S}\) is said to be a maximal clement if b < x for no \(\displaystyle{x}∈{S}\).
Clearly, the least element in « poset is a minimal clement and the greatest clement in a poset is a maximal element but the converse is not true.
Let \(\displaystyle{\left({N},\le\right)}\) is a poset where \(m \leq n\) means “m is a divisor of n” for m,\(\displaystyle{n}∈{N}\).
This poset \(\displaystyle{\left({N},\le\right)}\) contains no greatest element and no maximal element.
The least \(\displaystyle{\left({N},\le\right)}\) contains no greatest element and no maximal element.


Relevant Questions

asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-04-25
A wagon with two boxes of Gold, having total mass 300 kg, is cutloose from the hoses by an outlaw when the wagon is at rest 50m upa 6.0 degree slope. The outlaw plans to have the wagon roll downthe slope and across the level ground, and then fall into thecanyon where his confederates wait. But in a tree 40m from thecanyon edge wait the Lone Ranger (mass 75.0kg) and Tonto (mass60.0kg). They drop vertically into the wagon as it passes beneaththem. a) if they require 5.0 s to grab the gold and jump out, willthey make it before the wagon goes over the edge? b) When the twoheroes drop into the wagon, is the kinetic energy of the system ofthe heroes plus the wagon conserved? If not, does it increase ordecrease and by how much?
asked 2021-05-18
The student engineer of a campus radio station wishes to verify the effectivencess of the lightning rod on the antenna mast. The unknown resistance \(\displaystyle{R}_{{x}}\) is between points C and E. Point E is a "true ground", but is inaccessible for direct measurement because the stratum in which it is located is several meters below Earth's surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance \(\displaystyle{R}_{{y}}\). The procedure for finding the unknown resistance \(\displaystyle{R}_{{x}}\) is as follows. Measure resistance \(\displaystyle{R}_{{1}}\) between points A and B. Then connect A and B with a heavy conducting wire and measure resistance \(\displaystyle{R}_{{2}}\) between points A and C.Derive a formula for \(\displaystyle{R}_{{x}}\) in terms of the observable resistances \(\displaystyle{R}_{{1}}\) and \(\displaystyle{R}_{{2}}\). A satisfactory ground resistance would be \(\displaystyle{R}_{{x}}{<}{2.0}\) Ohms. Is the grounding of the station adequate if measurments give \(\displaystyle{R}_{{1}}={13}{O}{h}{m}{s}\) and R_2=6.0 Ohms?
asked 2021-05-16
Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.
A. Let y=f(x) be the equation of C. Find f(x).
B. Find the slope at P of the tangent to C.
C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?
D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.
E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.
Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-03-24
A man with mass 70.0 kg stands on a platform withmass 25.0 kg. He pulls on the free end of a rope thatruns over a pulley on the ceiling and has its other end fastened tothe platform. The mass of the rope and the mass of the pulley canbe neglected, and the pulley is frictionless. The rope is verticalon either side of the pulley.
a) With what force does he have to pull so that he and theplatform have an upward acceleration of \(\displaystyle{1.80}\frac{{m}}{{s}^{{2}}}\)?
b) What is the acceleration of the rope relative to him?
asked 2021-03-29
Solve the system. If the system does not have one unique solution, also state whether the system is onconsistent or whether the equations are dependent.
asked 2021-01-31
Use symbols to write the logical form of the following arguments. If valid, iden- tify the rule of inference that guarantees its validity. Otherwise, state whether the converse or the inverse error has been made. If you study hard for your discrete math final you will get an A. Jane got an A on her discrete math final. ‘Therefore, Jane must have studied hard.
asked 2021-04-19
For the cellar of a new house a hole is dug in the ground, withvertical sides going down 2.40m. A concrete foundation wallis built all the way across the 9.6m width of the excavation. This foundation wall is 0.183m away from the front of the cellarhole. During a rainstorm, drainage from the streetfills up the space in front of the concrete wall, but not thecellar behind the wall. The water does not soak into the clays oil. Find the force the water causes on the foundation wall. For comparison, the weight of the water is given by:
asked 2020-11-09
A shape has ________ if it can be folded about a line so that its two parts match exactly.