In an exit poll during the 2004 presidential election, voters were asked to name the issue that most affected their vote for a candidate for presidency. The following table summarizes their responses. Moral Values: 22% Economy/jobs: 20% Terrorism: 19% Iraq: 15% Health Care: 8% Taxes: 5% Education: 4% As you will notice, these percentages add up to 93%. Assume that the remaining 7% of these voters names other issues and let us denote these issues as Other. Draw a bar graph to display these data.

Question
Describing quantitative data
asked 2021-01-06
In an exit poll during the 2004 presidential election, voters were asked to name the issue that most affected their vote for a candidate for presidency. The following table summarizes their responses.
Moral Values: 22%
Economy/jobs: 20%
Terrorism: 19%
Iraq: 15%
Health Care: 8%
Taxes: 5%
Education: 4%
As you will notice, these percentages add up to 93%. Assume that the remaining 7% of these voters names other issues and let us denote these issues as Other. Draw a bar graph to display these data.

Answers (1)

2021-01-07
Given:
Issue | Percentage of Responces ____________________________________________ Moral values | 22 Economy/jobs | 20 Terrorism | 19 Iraq | 15 Health care | 8 Taxes | 5 Education | 4 Other | 7
Bar graph
The wigth of the bars have to be the same and the height of the bar has to be equal to the percentage of responses.
[Graph]
0

Relevant Questions

asked 2020-12-29
The presidential election is coming. Five survey companies (A, B, C, D, and E) are doing survey to forecast whether or not the Republican candidate will win the election. Each company randomly selects a sample size between 1000 and 1500 people. All of these five companies interview people over the phone during Tuesday and Wednesday. The interviewee will be asked if he or she is 18 years old or above and U.S. citizen who are registered to vote. If yes, the interviewee will be further asked: will you vote for the Republican candidate? On Thursday morning, these five companies announce their survey sample and results at the same time on the newspapers. The results show that a% (from A), b% (from B), c% (from C), d% (from D), and e% (from E) will support the Republican candidate. The margin of error is plus/minus 3% for all results. Suppose that \(\displaystyle{c}{>}{a}{>}{d}{>}{e}{>}{b}\). When you see these results from the newspapers, can you exactly identify which result(s) is (are) not reliable and not accurate? That is, can you identify which estimation interval(s) does (do) not include the true population proportion? If you can, explain why you can, if no, explain why you cannot and what information you need to identify. Discuss and explain your reasons. You must provide your statistical analysis and reasons.
asked 2020-11-12
Finance bonds/dividends/loans exercises, need help or formulas
Some of the exercises, calculating the Ri is clear, but then i got stuck:
A security pays a yearly dividend of 7€ during 5 years, and on the 5th year we could sell it at a price of 75€, market rate is 19%, risk free rate 2%, beta 1,8. What would be its price today? 2.1 And if its dividend growths 1,7% each year along these 5 years-what would be its price?
A security pays a constant dividend of 0,90€ during 5 years and thereafter will be sold at 10 €, market rate 18%, risk free rate 2,5%, beta 1,55, what would be its price today?
At what price have i purchased a security if i already made a 5€ profit, and this security pays dividends as follows: first year 1,50 €, second year 2,25€, third year 3,10€ and on the 3d year i will sell it for 18€. Market rate is 8%, risk free rate 0,90%, beta=2,3.
What is the original maturity (in months) for a ZCB, face value 2500€, required rate of return 16% EAR if we paid 700€ and we bought it 6 month after the issuance, and actually we made an instant profit of 58,97€
You'll need 10 Vespas for your Parcel Delivery Business. Each Vespa has a price of 2850€ fully equipped. Your bank is going to fund this operation with a 5 year loan, 12% nominal rate at the beginning, and after increasing 1% every year. You'll have 5 years to fully amortize this loan. You want tot make monthly installments. At what price should you sell it after 3 1/2 years to lose only 10% of the remaining debt.
asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-03-05
1950 randomly selected adults were asked if they think they are financially better off than their parents. The following table gives the two-way classification of the responses based on the education levels of the persons included in the survey and whether they are financially better off, the same as, or worse off than their parents
\(\begin{array}{|c|c|c|}\hline &\text{Less Than High School}&\text{High School}&\text{More Than High School}\\\hline \text{Better off} &140&440&430\\ \hline \text{Same as}&60&230&110\\ \hline \text{Worse off}&180&280&80\\ \hline\end{array}\\\)
Suppose one adult is selected at random from these 1950 adults. Find the following probablity.
Round your answer to three decimal places.
\(P(\text{more than high school or worse off})=?\)
asked 2021-02-11
Several models have been proposed to explain the diversification of life during geological periods. According to Benton (1997), The diversification of marine families in the past 600 million years (Myr) appears to have followed two or three logistic curves, with equilibrium levels that lasted for up to 200 Myr. In contrast, continental organisms clearly show an exponential pattern of diversification, and although it is not clear whether the empirical diversification patterns are real or are artifacts of a poor fossil record, the latter explanation seems unlikely. In this problem, we will investigate three models fordiversification. They are analogous to models for populationgrowth, however, the quantities involved have a differentinterpretation. We denote by N(t) the diversification function,which counts the number of taxa as a function of time, and by rthe intrinsic rate of diversification.
(a) (Exponential Model) This model is described by \(\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{e}}}{N}\ {\left({8.86}\right)}.\) Solve (8.86) with the initial condition N(0) at time 0, and show that \(\displaystyle{r}_{{{e}}}\) can be estimated from \(\displaystyle{r}_{{{e}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ {\left({8.87}\right)}\)
(b) (Logistic Growth) This model is described by \(\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{l}}}{N}\ {\left({1}\ -\ {\frac{{{N}}}{{{K}}}}\right)}\ {\left({8.88}\right)}\) where K is the equilibrium value. Solve (8.88) with the initial condition N(0) at time 0, and show that \(\displaystyle{r}_{{{l}}}\) can be estimated from \(\displaystyle{r}_{{{l}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{K}\ -\ {N}{\left({0}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ +\ {\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{K}\ -\ {N}{\left({t}\right)}}}}\right]}\ {\left({8.89}\right)}\) for \(\displaystyle{N}{\left({t}\right)}\ {<}\ {K}.\)
(c) Assume that \(\displaystyle{N}{\left({0}\right)}={1}\) and \(\displaystyle{N}{\left({10}\right)}={1000}.\) Estimate \(\displaystyle{r}_{{{e}}}\) and \(\displaystyle{r}_{{{l}}}\) for both \(\displaystyle{K}={1001}\) and \(\displaystyle{K}={10000}.\)
(d) Use your answer in (c) to explain the following quote from Stanley (1979): There must be a general tendency for calculated values of \(\displaystyle{\left[{r}\right]}\) to represent underestimates of exponential rates,because some radiation will have followed distinctly sigmoid paths during the interval evaluated.
(e) Explain why the exponential model is a good approximation to the logistic model when \(\displaystyle\frac{{N}}{{K}}\) is small compared with 1.
asked 2020-12-24
True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error.
asked 2021-01-27
Researchers carried out a survey of fourth-, fifth- and sixth-grade students in Michigan. Students were asked whether good grades, athletic ability, or being popular was most important to them. The two-way table summarizes the survey data.
\(\begin{array}{c|c}& 4th\ grade & 5th\ grade & 6th\ grade &Total \\ \hline Grades &49&50&69&168\\ \text{Athletic} &24&36&38&98\\ \text{Popular}\ &19&22&28&69\\ \hline \text{Total} & 92 & 108 & 135 &335 \end{array}\)
Suppose we select one of these students at random. What's the probability of each of the following? The student is a sixth-grader or rated good grades as Important.
asked 2021-02-09
Researchers carried out a survey of fourth-, fifth- and sixth-grade students in Michigan. Students were asked whether good grades, athletic ability, or being popular was most important to them. The two-way table summarizes the survey data.
\(\begin{array}{c|c} & 4th\ grade & 5th\ grade & 6th\ grade &Total \\ \hline Grades &49&50&69&168\\ Athletic &24&36&38&98\\ Popular\ &19&22&28&69\\ \hline Total & 92 & 108 & 135 &335 \end{array}\)
Suppose we select one of these students at random. What's the probability of each of the following? The student is not a sixth-grader and did not rate good grades as important.
asked 2020-10-19
Researchers carried out a survey of fourth-, fifth-, and sixth-grade students in Michigan. Students were asked whether good grades, athletic ability, or being popular was most important to them. This two-way table summarizes the survey data. PSK\begin{array} {lc} & Grade \ Most important & \begin{array}{l|c|c|c|c} & \begin{array}{c} 4 \mathrm{th} \ grade \end{array} & \begin{array}{c} 5 \mathrm{th} \ \text { grade } \end{array} & \begin{array}{c} 6 \mathrm{th} \ grade \end{array} & Total \\ \hline Grades & 49 & 50 & 69 & 168 \\ \hline Athletic & 24 & 36 & 38 & 98 \\ \hline Popular & 19 & 22 & 28 & 69 \\ \hline Total & 92 & 108 & 135 & 335 \end{array} \ \end{array}ZSK Suppose we select one of these students at random. What's the probability that: The student is a sixth grader or a student who rated good grades as important?
asked 2020-12-07
Would you rather spend more federal taxes on art? Of a random sample of \(n_{1} = 86\) politically conservative voters, \(r_{1} = 18\) responded yes. Another random sample of \(n_{2} = 85\) politically moderate voters showed that \(r_{2} = 21\) responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use \(\alpha = 0.05.\) (a) State the null and alternate hypotheses. \(H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2\)
\(H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2\)
\(H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}\) (b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal. (c)What is the value of the sample test statistic? (Test the difference \(p_{1} - p_{2}\). Do not use rounded values. Round your final answer to two decimal places.) (d) Find (or estimate) the P-value. (Round your answer to four decimal places.) (e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are not statistically significant. (f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.
...