Solve equation ${y}^{(iv)}+y=1$ with Laplace

with $\text{}\text{}\text{}\text{}\text{}y(0)={y}^{\prime}(0)={y}^{\u2033}(0)={y}^{\u2034}(0)=0$

I got

$$Y(s)=\frac{1}{s({s}^{4}+1)}$$

But, I don't know how to continue:

${s}^{4}+1=({s}^{2}+\sqrt{2}s+1)({s}^{2}-\sqrt{2}s+1)$

with $\text{}\text{}\text{}\text{}\text{}y(0)={y}^{\prime}(0)={y}^{\u2033}(0)={y}^{\u2034}(0)=0$

I got

$$Y(s)=\frac{1}{s({s}^{4}+1)}$$

But, I don't know how to continue:

${s}^{4}+1=({s}^{2}+\sqrt{2}s+1)({s}^{2}-\sqrt{2}s+1)$