Identify the population: An education professor wants to gather information about parental involvement in early education for students attending a particular Ivy League university. She obtains a list of registered students from the registrar's office and randomly chooses 300 students to study.

Question
Describing quantitative data
asked 2021-01-31
Identify the population: An education professor wants to gather information about parental involvement in early education for students attending a particular Ivy League university. She obtains a list of registered students from the registrar's office and randomly chooses 300 students to study.

Answers (1)

2021-02-01
The population contains all individuals/subjects about which we want to collect information.
A sample is the part of the population of which information was actually collected.
We then note that the sampleis the 300 randomly selected students attending a particular Ivy League university and thus the population then contains all students attendling partictular ivy League university.
0

Relevant Questions

asked 2020-11-29
State whether the investigation in question is an observational study or a designed experiment. Justify your answer in each case.
The Salk Vaccine. In the 1940s and early 1950s, the public was greatly concerned about polio. In an attempt to prevent this disease, Jonas Salk of the University of Pittsburgh developed a polio vaccine. In a test of the vaccine’s efficacy, involving nearly 2 million grade-school children, half of the children received the Salk vaccine, the other half received a placebo, in this case an injection of salt dissolved in water. Neither the children nor the doctors performing the diagnoses knew which children belonged to which group, but an evaluation center did. The center found that the incidence of polio was far less among the children inoculated with the Salk vaccine. From that information, the researchers concluded that the vaccine would be effective in preventing polio for all U.S. school children, consequently, it was made available for general use.
asked 2020-12-24
True or False
1.The goal of descriptive statistics is to simplify, summarize, and organize data.
2.A summary value, usually numerical, that describes a sample is called a parameter.
3.A researcher records the average age for a group of 25 preschool children selected to participate in a research study. The average age is an example of a statistic.
4.The median is the most commonly used measure of central tendency.
5.The mode is the best way to measure central tendency for data from a nominal scale of measurement.
6.A distribution of scores and a mean of 55 and a standard deviation of 4. The variance for this distribution is 16.
7.In a distribution with a mean of M = 36 and a standard deviation of SD = 8, a score of 40 would be considered an extreme value.
8.In a distribution with a mean of M = 76 and a standard deviation of SD = 7, a score of 91 would be considered an extreme value.
9.A negative correlation means that as the X values decrease, the Y values also tend to decrease.
10.The goal of a hypothesis test is to demonstrate that the patterns observed in the sample data represent real patterns in the population and are not simply due to chance or sampling error.
asked 2020-11-09
A researcher is interested in finding a \(90\%\) confidence interval for the mean number minutes students are concentrating on their professor during a one hour statistics lecture. The study included 117 students who averaged 40.9 minutes concentrating on their professor during the hour lecture. The standard deviation was 11.8 minutes. Round answers to 3 decimal places where possible.
a.
To compute the confidence interval use a ? distribution.
b.
With \(90\%\) confidence the population mean minutes of concentration is between ____ and ____ minutes.
c.
If many groups of 117 randomly selected students are studied, then a different confidence interval would be produced from each group. About ____ percent of these confidence intervals will contain the true population mean minutes of concentration and about ____ percent will not contain the true population mean number of minutes of concentration.
asked 2020-12-29
The presidential election is coming. Five survey companies (A, B, C, D, and E) are doing survey to forecast whether or not the Republican candidate will win the election. Each company randomly selects a sample size between 1000 and 1500 people. All of these five companies interview people over the phone during Tuesday and Wednesday. The interviewee will be asked if he or she is 18 years old or above and U.S. citizen who are registered to vote. If yes, the interviewee will be further asked: will you vote for the Republican candidate? On Thursday morning, these five companies announce their survey sample and results at the same time on the newspapers. The results show that a% (from A), b% (from B), c% (from C), d% (from D), and e% (from E) will support the Republican candidate. The margin of error is plus/minus 3% for all results. Suppose that \(\displaystyle{c}{>}{a}{>}{d}{>}{e}{>}{b}\). When you see these results from the newspapers, can you exactly identify which result(s) is (are) not reliable and not accurate? That is, can you identify which estimation interval(s) does (do) not include the true population proportion? If you can, explain why you can, if no, explain why you cannot and what information you need to identify. Discuss and explain your reasons. You must provide your statistical analysis and reasons.
asked 2020-11-10
A researcher was interested in the effectiveness of a new drug for testosterone replacement in adult men between the ages of 40 and 59 in the U.S. who are experiencing symptoms related to abnormally low testosterone levels. According to the 2010 Census data, there were 36,135,061 men between the ages of 40 and 59 in the U.S. 100 U.S. men participated in a clinical trial of the drug. Those 100 men were classified by race and ethnicity (White, Asian, Black, Hispanic, Native, Islander, Other) and their average testosterone level was 275 \(\displaystyle\frac{{{n}{g}}}{{{d}{L}}}\). The average testosterone level of all adult men in the U.S. between 40 and 59 is 565 ng/dL. Use this information for problems A-E
A. Describe the population.
B.. What is the sample?
C, Identify the parameter(s) and give their value(s).
D. Identify the statistic(s) and give their value(s).
E. Which of the variable(s) are categorical and which are numerical?
asked 2021-02-25
After receiving many complaints about his final-grade histogram from students currently taking a Statistics course, the professor distributed the following revised histogram.
a) Comment on this display.
b) Describe the distribution of grades.
asked 2021-02-25
Give a full and correct answer Why is it important that a sample be random and representative when conducting hypothesis testing? Representative Sample vs. Random Sample: An Overview Economists and researchers seek to reduce sampling bias to near negligible levels when employing statistical analysis. Three basic characteristics in a sample reduce the chances of sampling bias and allow economists to make more confident inferences about a general population from the results obtained from the sample analysis or study: * Such samples must be representative of the chosen population studied. * They must be randomly chosen, meaning that each member of the larger population has an equal chance of being chosen. * They must be large enough so as not to skew the results. The optimal size of the sample group depends on the precise degree of confidence required for making an inference. Representative sampling and random sampling are two techniques used to help ensure data is free of bias. These sampling techniques are not mutually exclusive and, in fact, they are often used in tandem to reduce the degree of sampling error in an analysis and allow for greater confidence in making statistical inferences from the sample in regard to the larger group. Representative Sample A representative sample is a group or set chosen from a larger statistical population or group of factors or instances that adequately replicates the larger group according to whatever characteristic or quality is under study. A representative sample parallels key variables and characteristics of the large society under examination. Some examples include sex, age, education level, socioeconomic status (SES), or marital status. A larger sample size reduced sampling error and increases the likelihood that the sample accurately reflects the target population. Random Sample A random sample is a group or set chosen from a larger population or group of factors of instances in a random manner that allows for each member of the larger group to have an equal chance of being chosen. A random sample is meant to be an unbiased representation of the larger population. It is considered a fair way to select a sample from a larger population since every member of the population has an equal chance of getting selected. Special Considerations: People collecting samples need to ensure that bias is minimized. Representative sampling is one of the key methods of achieving this because such samples replicate as closely as possible elements of the larger population under study. This alone, however, is not enough to make the sampling bias negligible. Combining the random sampling technique with the representative sampling method reduces bias further because no specific member of the representative population has a greater chance of selection into the sample than any other. Summarize this article in 250 words.
asked 2021-01-06
In an exit poll during the 2004 presidential election, voters were asked to name the issue that most affected their vote for a candidate for presidency. The following table summarizes their responses.
Moral Values: 22%
Economy/jobs: 20%
Terrorism: 19%
Iraq: 15%
Health Care: 8%
Taxes: 5%
Education: 4%
As you will notice, these percentages add up to 93%. Assume that the remaining 7% of these voters names other issues and let us denote these issues as Other. Draw a bar graph to display these data.
asked 2021-02-23
1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately \(\displaystyle\sigma={40.4}\) dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately \(\displaystyle\sigma={57.5}\). You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required?
asked 2021-02-25
An article in Chance magazine reported on the Houston Independent School District's magnet schools programs. Of the 1755 qualified applicants, 931 were accepted, 300 were wait-listed, and 524 were turned away for lack of space. Find the relative freuqency distribution of the decisions made and write a sentence describing it.
...