A January 2007 Gallup Poll question asked, "In general, do you think things have gotten better or gotten worse in this country in the last five years?" Possible answers were “Better”, "Worse”, "No Change", “Don't Know”, and “No Response". What kind of variable is the response?

A January 2007 Gallup Poll question asked, "In general, do you think things have gotten better or gotten worse in this country in the last five years?" Possible answers were “Better”, "Worse”, "No Change", “Don't Know”, and “No Response". What kind of variable is the response?

Question
Analyzing categorical data
asked 2020-10-20
A January 2007 Gallup Poll question asked, "In general, do you think things have gotten better or gotten worse in this country in the last five years?" Possible answers were “Better”, "Worse”, "No Change", “Don't Know”, and “No Response". What kind of variable is the response?

Answers (1)

2020-10-21
"The variables are the topics that were investigated.
Categorical/qualitative variables places the individuals into a category, while a quantitative variable is a numerical variable.
In this cnse, the variable is the response to the questions. This variable is categorical, because the categories are” Democrat”, ” Republican”, ""Independent” * Other”, and “No Response”.
Categorical"
0

Relevant Questions

asked 2020-10-18
A February 2007 Gallup Poll question asked, “In politics, as of today, do you consider yourself a Republican, a Democrat, or an Independent?” The possible responses were "Democrat". "Republican". “Independent”, “Other”, and “No Response”. What kind of variable to the response?
asked 2021-02-21
In this question, the function f is differentiable, and f'(x) = g(x). We don't know exactly what f(x) or g(x) are, so your answers will have f(x) and g(x) in them.
Compute the derivatives of the following function.
\(\displaystyle{e}^{{{\sin{{\left({f{{\left({x}\right)}}}\right)}}}}}\)
asked 2021-04-16
In this question, the function f is differentiable, and f'(x) = g(x). We don't know exactly what f(x) or g(x) are, so your answers will have f(x) and g(x) in them.
Compute the derivatives of the following function.
\(\displaystyle{\ln{{\left({x}^{{{2}}}{f{{\left({x}\right)}}}\right)}}}\)
asked 2021-01-22
The Kroger Company is one of the largest grocery retailers in the United States, with over 2000 grocery stores across the country. Kroger uses an online customer opinion questionnaire to obtain performance data about its products and services and learn about what motivates its customers (Kroger website, April 2012). In the survey, Kroger customers were asked if they would be willing to pay more for products that had each of the following four characteristics.
The four questions were: Would you pay more for:
products that have a brand name?
products that are environmentally friendly?
products that are organic?
products that have been recommended by others?
For each question, the customers had the option of responding Yes if they would pay more or No if they would not pay more.
a. Are the data collected by Kroger in this example categorical or quantitative?
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-01-25

A survey of 4826 randomly selected young adults (aged 19 to 25 ) asked, "What do you think are the chances you will have much more than a middle-class income at age 30?" The two-way table summarizes the responses. \(\begin{array} {lc} & \text{Gender} \ \text {Opinion} & \begin{array}{l|c|c|c} & Female & Male & Total \\ \hline \text{Almost no chance} & 96 & 98 & 194 \\ \hline \begin{array}{l} \text{Some chance but} \\ \text{probably not} \end{array} & 426 & 286 & 712 \\ \hline A\ 50-50\ chance & 696 & 720 & 1416 \\ \hline \text{A good chance} & 663 & 758 & 1421 \\ \hline \text{Almost certain} & 486 & 597 & 1083 \\ \hline Total & 2367 & 2459 & 4826 \end{array}\ \end{array}\)

Choose a survey respondent at random. Define events G: a good chance, M: male, and N: almost no chance. Find P(G | M). Interpret this value in context.

asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-04-07
Ok, If a bobsled makes a run down an ice track starting at 150m vertical distance up the hill and there is no friction, what isthe velocity at the bottom of the hill?
I know that the initial velocity here is 0 because it isstarting from rest. And this problem deal with theconservation of energy. But, I don't know where to go fromhere.
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-01-31
The Bureau of Transportation Statistics Omnibus Household Survey is conducted annually and serves as an information source for the U.S. Department of Transportation. In one part of the survey the person being interviewed was asked to respond to the following statement: "Drivers of motor vehicles should be allowed to talk on a hand-held cell phone while driving." Possible responses were strongly agree, some what agree, some what disagree, and strongly disagree. Forty-four respondents said that they strongly agree with this statement, 120 said that they some what agree, 165 said they some what disagree, and 755 said they strongly disagree with this statement.
Do the responses for this statement provide categorical or quantitative data?
...