# Suppose a product costs R10 and the profit rate is 20% on the cost price, find the selling price

Question
Upper level probability
Suppose a product costs R10 and the profit rate is 20% on the cost price, find the selling price

2020-10-19
Given:
Cost price: R10
Profit rate: 20%
The selling price is then the cost price increased by 20% of the cost price.
Selling price = Cost price+Profit rate*Cost price.
PSK=R10+20%*R10 =R10+0.20*R10 =1.20*R10 =R12ZSK
Thus the selling price is R12.

### Relevant Questions

(1 pt) A new software company wants to start selling DVDs withtheir product. The manager notices that when the price for a DVD is19 dollars, the company sells 140 units per week. When the price is28 dollars, the number of DVDs sold decreases to 90 units per week.Answer the following questions:
A. Assume that the demand curve is linear. Find the demand, q, as afunction of price, p.
B. Write the revenue function, as a function of price. Answer:R(p)=
C. Find the price that maximizes revenue. Hint: you may sketch thegraph of the revenue function. Round your answer to the closestdollar.
D. Find the maximum revenue. Answer:
Dayton Power and Light, Inc., has a power plant on the Miami Riverwhere the river is 800 ft wide. To lay a new cable from the plantto a location in the city 2 mi downstream on the opposite sidecosts $180 per foot across the river and$100 per foot along theland.
(a) Suppose that the cable goes from the plant to a point Q on theopposite side that is x ft from the point P directly opposite theplant. Write a function C(x) that gives the cost of laying thecable in terms of the distance x.
(b) Generate a table of values to determin if the least expensivelocation for point Q is less than 2000 ft or greater than 2000 ftfrom point P.
Suppose the manufacturer of widgets has developed the following table showing the highest price p, in dollars, of a widget at which N widgets can be sold.
$$\begin{array}{|c|c|} \hline Number\ N & Price\ p\\ \hline 200 & 53.00\\ \hline 250 & 52.50\\\hline 300 & 52.00\\ \hline 350 & 51.50\\ \hline \end{array}$$
(a) Find a formula for p in terms of N modeling the data in the table.
$$\displaystyle{p}=$$
(b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in a month as a function of the number N of widgets produced in a month.
$$\displaystyle{R}=$$
Is R a linear function of N?
(c) On the basis of the tables in this exercise and using cost, $$\displaystyle{C}={35}{N}+{900}$$, use a formula to express the monthly profit P, in dollars, of this manufacturer as a function of the number of widgets produced in a month.
$$\displaystyle{P}=$$
(d) Is P a linear function of N?
A manager estimates a band's profit p for a concert by using the function p(t)=-200t^2+2500t-c, where t is the price per ticket and c is the band's operation cost. The table shows the band's operating cost at three different concert locations. What range of ticket prices should the band charge at each location in order to make a profit of at least $1000 at each concert? Band's Costs Location Operating Cost Freemont Park$900
Saltillo Plaza $1500 Riverside Walk$2500
The demand function for a commodity is Q = 6000 - 30P, with P the price and Q the number of units. Fixed costs are R 72 000 and the variable cost is R 60 per additional unit produced. Dtermine the price at which profit is a maximum and calculate the maximum profit.

The fixed costs where cost function is $$C(x)=42.5x+80,00$$

Suppose that $$X_{1}, X_{2} and X_{3}$$ are three independent random variables with the same distribution as X.
What is the ecpected value of the sum $$X_{1}+X_{2}+X_{3}$$? The product $$X_{1}X_{2}X_{3}$$?
Suppose a discrete random variable X assumes the value $$\frac{3}{2}$$ with probability 0.5 and assumes the value $$\frac{1}{2}$$ with probability 0.5.
Let's say the widget maker has developed the following table that shows the highest dollar price p. widget where you can sell N widgets. Number N Price p $$200 53.00$$
$$250 52.50$$
$$300 52.00$$
$$35051.50$$ (a) Find a formula for pin terms of N modeling the data in the table. (b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in month as a function of the number N of widgets produced in a month. $$R=$$ Is Ra linear function of N? (c) On the basis of the tables in this exercise and using cost, $$C= 35N + 900$$, use a formula to express the monthly profit P, in dollars, of this manufacturer asa function of the number of widgets produced in a month $$p=$$ (d) Is Pa linear function of N2 e. Explain how you would find breakeven. What does breakeven represent?
Problem: find acondition on H, involving $$\displaystyle{P}_{{0}}$$ and k, that will prevent solutions from growing exponentially.