Why the derivatives of exponential functions, lets say, as apposed to polynomials, grow more rapidly than the functions themselves? i.e. y=e^x^2 dy/dx=2xe^x^2 I am interested in a verbal explanation.

Jairo Decker 2022-10-12 Answered
Why the derivatives of exponential functions, lets say, as apposed to polynomials, grow more rapidly than the functions themselves?
i.e.
y = e x 2 d y d x = 2 x e x 2
I am interested in a verbal explanation.
You can still ask an expert for help

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Answers (2)

Szulikto
Answered 2022-10-13 Author has 22 answers
You must consider that there are some exponential functions such as 1.00001 x that clearly grows much slower than itself and there are functions such as ( 100 100 ) x or even 10 x that clearly grow faster than itself. This can be determined by looking at a graph or by doing some numerical calculations.

Now consider the derivative of a x . This is equal to
lim h 0 a h + x a x h .
Use exponent rules and factor out an ax to find that
lim h 0 a h + x a x h = a x lim h 0 a h 1 h .
Notice that a x is the function itself and lim h 0 a h 1 h is simply a constant (which happens to be equal to log(a)). This means exponential functions grow some constant multiple of themselves and, if this constant is greater than 1, they will grow faster than the function itself.

Often times people define e to be the value of a such that
lim h 0 a h 1 h = 1.
And log ( x ) = log e ( x ). The existence of the value e can be justified because one can graphically determine that 1.00001 x grows slower than itself and 10 x grows faster as mentioned before. That means there should be an "e", 0 < e < 10.

Polynomial functions can grow faster than themselves on an interval but as x the polynomial with the higher degree will be larger in magnitude for any polynomial. This is why this result does not hold for polynomials as well; the derivative of a polynomial has a degree of one less than the polynomial itself.
Did you like this example?
Subscribe for all access
Winston Todd
Answered 2022-10-14 Author has 3 answers
One possible explanation lies in the definition of e x : it is the sum of the power series:
1 + x + x 2 2 ! + x 3 3 ! + + x k k ! +
which converges for all x and can be differentiated term by term. Now you can easily check that
d d x ( x k k ! ) = x k 1 ( k 1 ) ! ,
so that
d d x ( 1 + x + x 2 2 ! + x 3 3 ! + ) = 1 + x + x 2 2 ! +
Did you like this example?
Subscribe for all access

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

New questions