Compute a laplace transform $\mathcal{L}[{e}^{-2x}\mathrm{sin}x]$

So I want to do ${\int}_{0}^{\mathrm{\infty}}{e}^{-2x}\mathrm{sin}x{e}^{-px}\phantom{\rule{thinmathspace}{0ex}}dx={\int}_{0}^{\mathrm{\infty}}{e}^{-(p+2)x}\mathrm{sin}x\phantom{\rule{thinmathspace}{0ex}}dx$

But due to the way $e$ and $\mathrm{sin}x$ integrates I dont know where to go from here?

So I want to do ${\int}_{0}^{\mathrm{\infty}}{e}^{-2x}\mathrm{sin}x{e}^{-px}\phantom{\rule{thinmathspace}{0ex}}dx={\int}_{0}^{\mathrm{\infty}}{e}^{-(p+2)x}\mathrm{sin}x\phantom{\rule{thinmathspace}{0ex}}dx$

But due to the way $e$ and $\mathrm{sin}x$ integrates I dont know where to go from here?