 # Find the mean and median wage. A supervisor at $1,200 a week, an inventory manager at$700 a week, six stock boys at $400 a week and four drivers at$500 are employed by a small warehouse. Mean: The sum of all the entries divided by the total number of entries is known mean. amanf 2021-02-10 Answered
Find the mean and median wage.
A supervisor at $\mathrm{}1,200$ a week, an inventory manager at $\mathrm{}700$ a week, six stock boys at $\mathrm{}400$ a week and four drivers at $\mathrm{}500$ are employed by a small warehouse.
Mean:
The sum of all the entries divided by the total number of entries is known mean.
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Laith Petty
Calculation:
The formula for mean is,
$\stackrel{―}{x}=\frac{\sum x}{n}$
Substitute the values and nas 4 in the formula,
$\stackrel{―}{x}=\frac{1,200+700+6\left(400\right)+4\left(500\right)}{12}$
$\frac{6,300}{12}=525$
Thus, the mean wage is $\mathrm{}525$.
Median:
- If the data set consists of odd number of entries then the median is the middle value of the data.
- If the data set consists of even number of entries then the median is the mean of the middle vales in the data set.
Arrange the data in ascending order.
400, 400, 400, 400, 400, 400, 500, 500, 500, 500 700, 1,200
Here the number of observations is 12 which is an even number. Therefore the median is the average of the middle values of the data that is, ,
The ${6}^{th}$ observation represents 400 and ${7}^{th}$ observation represents 500. Therefore the median is, $Median=\frac{400+500}{2}$
$=\frac{900}{2}=450$
Thus, the median wage is $\mathrm{}450$.