Let ${v}_{1}=\left(\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\right)$ , ${v}_{2}=\left(\begin{array}{c}0\\ 1\\ 1\\ 0\end{array}\right)$, ${v}_{3}=\left(\begin{array}{c}0\\ 0\\ 1\\ 1\end{array}\right)$, ${v}_{4}=\left(\begin{array}{c}2\\ 0\\ 0\\ 1\end{array}\right)$ ${\mathbb{R}}^{4}$ vectors.

Show that every $v\in {\mathbb{R}}^{4\times 1}$ can be written as vectors $({v}_{1},{v}_{2},{v}_{3},{v}_{4})$ linear combination.

My attempt:

$\left[\begin{array}{ccccl}1& 0& 0& 2& {v}_{1}\\ 1& 1& 0& 0& {v}_{2}\\ 0& 1& 1& 0& {v}_{3}\\ 0& 0& 1& 1& {v}_{4}\end{array}\right]$

Where do I go from here? Every input is appreciated.

Show that every $v\in {\mathbb{R}}^{4\times 1}$ can be written as vectors $({v}_{1},{v}_{2},{v}_{3},{v}_{4})$ linear combination.

My attempt:

$\left[\begin{array}{ccccl}1& 0& 0& 2& {v}_{1}\\ 1& 1& 0& 0& {v}_{2}\\ 0& 1& 1& 0& {v}_{3}\\ 0& 0& 1& 1& {v}_{4}\end{array}\right]$

Where do I go from here? Every input is appreciated.