Using the equivalent ratio, we cross multiply:

\(\displaystyle\frac{{{4}{\left(\frac{{3}}{{4}}\right)}}}{{10}}=\frac{{x}}{{1}}\)

\(\displaystyle{4}{\left(\frac{{3}}{{3}}\right)}{\left({1}\right)}={10}{x}\)

\(\displaystyle{4}{\left(\frac{{3}}{{4}}\right)}={10}{x}\)

Write the mixed number as an importer fraction:

\(\displaystyle\frac{{19}}{{4}}={10}{x}\)

Multiply both sides by \(\displaystyle\frac{{1}}{{10}}\):

\(\displaystyle{\left(\frac{{19}}{{4}}\right)}\cdot{\left(\frac{{1}}{{10}}\right)}={10}{x}\cdot\frac{{1}}{{10}}\)

\(\displaystyle\frac{{19}}{{40}}={x}\)

So, there is \(\displaystyle\frac{{19}}{{40}}\) cup of broth per serving.

\(\displaystyle\frac{{19}}{{40}}\) cup

\(\displaystyle\frac{{{4}{\left(\frac{{3}}{{4}}\right)}}}{{10}}=\frac{{x}}{{1}}\)

\(\displaystyle{4}{\left(\frac{{3}}{{3}}\right)}{\left({1}\right)}={10}{x}\)

\(\displaystyle{4}{\left(\frac{{3}}{{4}}\right)}={10}{x}\)

Write the mixed number as an importer fraction:

\(\displaystyle\frac{{19}}{{4}}={10}{x}\)

Multiply both sides by \(\displaystyle\frac{{1}}{{10}}\):

\(\displaystyle{\left(\frac{{19}}{{4}}\right)}\cdot{\left(\frac{{1}}{{10}}\right)}={10}{x}\cdot\frac{{1}}{{10}}\)

\(\displaystyle\frac{{19}}{{40}}={x}\)

So, there is \(\displaystyle\frac{{19}}{{40}}\) cup of broth per serving.

\(\displaystyle\frac{{19}}{{40}}\) cup