Finding values of x for logarithm

The question is to find the numbers of x which satisfy the equation.

$${\mathrm{log}}_{x}10={\mathrm{log}}_{4}100.$$

I have

$$\begin{array}{rl}\frac{\mathrm{ln}10}{\mathrm{ln}x}& =\frac{\mathrm{ln}100}{\mathrm{ln}4}\\ \frac{\mathrm{ln}10}{\mathrm{ln}x}& =\frac{2\mathrm{ln}10}{2\mathrm{ln}2}\end{array}$$

What would I do after this step?

The question is to find the numbers of x which satisfy the equation.

$${\mathrm{log}}_{x}10={\mathrm{log}}_{4}100.$$

I have

$$\begin{array}{rl}\frac{\mathrm{ln}10}{\mathrm{ln}x}& =\frac{\mathrm{ln}100}{\mathrm{ln}4}\\ \frac{\mathrm{ln}10}{\mathrm{ln}x}& =\frac{2\mathrm{ln}10}{2\mathrm{ln}2}\end{array}$$

What would I do after this step?