P(2 or more defects)=P(2 defects)+P(3 defects),

since one item cannot habe both 2 and 3 defects. So,

P(2 or more defects)=f(2)+f(3)=0.4

b.Similarly,

P(1 or more defects)=f(1)+f(2)+f(3)=.11

Therefore, a phone is more likely to have 0 defects.

Question

asked 2021-05-05

The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with \(\displaystyle\mu={1.5}\) and \(\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}\).

(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.

(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than \(\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}\).

(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of \(\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}\)? Explain, based on theprobability of this occurring.

(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?

(e) What is the moment generating function for X?

(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.

(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than \(\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}\).

(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of \(\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}\)? Explain, based on theprobability of this occurring.

(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?

(e) What is the moment generating function for X?

asked 2021-02-25

We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

asked 2021-02-21

Subjects for the next presidential election poll are contacted using telephone numbers in which the last four digits are randomly selected (with replacement). Find the probability that for one such phone number, the last four digits include at least one 0.

asked 2021-02-03

A normal distribution has a mean of 32 and a standard deviation of 4. Find the probability that a randomly selected xx -value from the distribution is at most 35. Round to four decimal places.

asked 2020-11-30

The spinner is spun twice. Two possible outcomes art AC and CA.

a. Create a sample space that lists all of the equally likely outcomes.

b. Refer to the sample space to find the probability of spinning A one or more times in two spins.

a. Create a sample space that lists all of the equally likely outcomes.

b. Refer to the sample space to find the probability of spinning A one or more times in two spins.

asked 2021-01-25

A survey of 4826 randomly selected young adults (aged 19 to 25 ) asked, "What do you think are the chances you will have much more than a middle-class income at age 30?" The two-way table summarizes the responses. \(\begin{array} {lc} & \text{Gender} \ \text {Opinion} & \begin{array}{l|c|c|c} & Female & Male & Total \\ \hline Almost no chance & 96 & 98 & 194 \\ \hline \begin{array}{l} Some chance but \\ robably not \end{array} & 426 & 286 & 712 \\ \hline A 50-50 chance & 696 & 720 & 1416 \\ \hline A good chance & 663 & 758 & 1421 \\ \hline Almost certain & 486 & 597 & 1083 \\ \hline Total & 2367 & 2459 & 4826 \end{array}\ \end{array}\)

Choose a survey respondent at random. Define events G: a good chance, M: male, and N: almost no chance. Find P(G | M). Interpret this value in context.

asked 2021-04-20

(1 pt) A new software company wants to start selling DVDs withtheir product. The manager notices that when the price for a DVD is19 dollars, the company sells 140 units per week. When the price is28 dollars, the number of DVDs sold decreases to 90 units per week.Answer the following questions:

A. Assume that the demand curve is linear. Find the demand, q, as afunction of price, p.

Answer: q=

B. Write the revenue function, as a function of price. Answer:R(p)=

C. Find the price that maximizes revenue. Hint: you may sketch thegraph of the revenue function. Round your answer to the closestdollar.

Answer:

D. Find the maximum revenue. Answer:

A. Assume that the demand curve is linear. Find the demand, q, as afunction of price, p.

Answer: q=

B. Write the revenue function, as a function of price. Answer:R(p)=

C. Find the price that maximizes revenue. Hint: you may sketch thegraph of the revenue function. Round your answer to the closestdollar.

Answer:

D. Find the maximum revenue. Answer:

asked 2020-12-12

Census data are often used to obtain probability distributions for various random variables. Census data for families in a particular state with a combined income of $50,000 or more show that 22% of these families have no children, 30% have one child, 27% have two children, and 21% have three children. From this information, construct the probability distribution for x, where x represents the number of children per family for this income group. (Give your answers correct to two decimal places.)
\(P(0 \text{children}) =\)

\(P(1 \text{child}) =\)

\(P(2 \text{children}) =\)

\(P(3 \text{children}) =\)

\(P(1 \text{child}) =\)

\(P(2 \text{children}) =\)

\(P(3 \text{children}) =\)

asked 2021-04-21

The best laboratory vacuum has a pressure of about \(\displaystyle{1.00}\cdot{10}^{{-{18}}}\) atm, or \(\displaystyle{1.01}\cdot{10}^{{-{13}}}{P}{a}\). How many gas molecules are there per cubic centimeter in such a vacuum at 293 K?

asked 2021-02-23

1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts.
a. To compute the confidence interval use a ? z t distribution.
b. With 98% confidence the population mean number of texts per day is between and texts.
c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day.
2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately \(\displaystyle\sigma={40.4}\) dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n =
3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately \(\displaystyle\sigma={57.5}\). You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required?