# Luis and raul are riding there bicycles to the beach from their respective homes. Luis proposes that they leave their respective homes at the same time and plan to arrive at the beach at the same time. The diagram shows Luis position at two points during his ride to the beach. Write an equation in slope intercept form to represent Luis's Ride from his house to the beach. If raul lives 5 miles closer to the beach than Luis, At what speed must Raul ride for the plan to work?

Question
Algebra foundations
Luis and raul are riding there bicycles to the beach from their respective homes. Luis proposes that they leave their respective homes at the same time and plan to arrive at the beach at the same time. The diagram shows Luis position at two points during his ride to the beach. Write an equation in slope intercept form to represent Luis's Ride from his house to the beach. If raul lives 5 miles closer to the beach than Luis, At what speed must Raul ride for the plan to work?

2020-10-29
Part A = y=−7.5x+15
Part B = 5 mi/hr

### Relevant Questions

The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrust: one positive and one negative. The positive contribution comes from air pushed backward, away from the propeller (so dm/dt<0), at a speed vex relative to the propeller. The negative contribution comes from this same quantity of air flowing into the front of the propeller (so dm/dt>0) at speed v, equal to the speed of the airplane through the air.
For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 $$\displaystyle\frac{{m}}{{s}^{{2}}}$$, moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
$$\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}$$
where A is the cross-sectional area of the vehicle and $$\displaystyle{C}_{{d}}$$ is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity $$\displaystyle\vec{{{v}}}$$. Find the power dissipated by form drag.
Express your answer in terms of $$\displaystyle{C}_{{d}},{A},$$ and speed v.
Part B:
A certain car has an engine that provides a maximum power $$\displaystyle{P}_{{0}}$$. Suppose that the maximum speed of thee car, $$\displaystyle{v}_{{0}}$$, is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power $$\displaystyle{P}_{{1}}$$ is 10 percent greater than the original power ($$\displaystyle{P}_{{1}}={110}\%{P}_{{0}}$$).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, $$\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}$$, is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.
A wagon with two boxes of Gold, having total mass 300 kg, is cutloose from the hoses by an outlaw when the wagon is at rest 50m upa 6.0 degree slope. The outlaw plans to have the wagon roll downthe slope and across the level ground, and then fall into thecanyon where his confederates wait. But in a tree 40m from thecanyon edge wait the Lone Ranger (mass 75.0kg) and Tonto (mass60.0kg). They drop vertically into the wagon as it passes beneaththem. a) if they require 5.0 s to grab the gold and jump out, willthey make it before the wagon goes over the edge? b) When the twoheroes drop into the wagon, is the kinetic energy of the system ofthe heroes plus the wagon conserved? If not, does it increase ordecrease and by how much?
An airplane propeller is 2.08 m in length (from tip to tip) and has a mass of 117 kg. When the airpline's engine is first started, it applies a constant torque of $$\displaystyle{1950}\ {N}\cdot{m}$$ to the propeller, which starts from rest.
a) What is the angular acceleration of the propeller? Model the propeller as a slender rod.
b) What is the propeller's angular speed after making 5.00 revolutions?
c) How much work is done by the engine during the first 5.00 revolutions?
e) What is the instantaneous power output of the motor at the instant that the propeller has turne through 5.00 revolutions?
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
For the equation (-1,2), $$y= \frac{1}{2}x - 3$$, write an equation in slope intercept form for the line that passes through the given point and is parallel to the graph of the given equation.
$$\displaystyle{E}={5.0}\times{10}^{{3}}\frac{{N}}{{C}}$$