# Why a complete graph has (n(n−1))/2 edges?

Why a complete graph has $\frac{n\left(n-1\right)}{2}$ edges?
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

falwsay
A simpler answer without binomials: A complete graph means that every vertex is connected with every other vertex. If you take one vertex of your graph, you therefore have $n-1$ outgoing edges from that particular vertex.
Now, you have $n$ vertices in total, so you might be tempted to say that there are $n\left(n-1\right)$ edges in total, $n-1$ for every vertex in your graph. But this method counts every edge twice, because every edge going out from one vertex is an edge going into another vertex. Hence, you have to divide your result by $2$. This leaves you with $n\left(n-1\right)/2$.
###### Did you like this example?
pokvarilaap
A complete graph has an edge between any two vertices. You can get an edge by picking any two vertices.
So if there are $n$ vertices, there are 𝑛 choose $2=$$\left(\genfrac{}{}{0}{}{n}{2}\right)=n\left(n-1\right)/2$ edges.