(2x-5)/sqrt(x+5)

Question
Linear equations and graphs
$$\displaystyle\frac{{{2}{x}-{5}}}{\sqrt{{{x}+{5}}}}$$

2021-01-18
$$\displaystyle\to\frac{{{2}{x}-{5}}}{{\sqrt{{{x}+{5}}}}}=$$
Multiply by the conjugate PSK(sqrt(x+5))/(sqrt(x+5)) =((2x-5)sqrt(x+5))/(sqrt(x+5)sqrt(x+5))ZSK
$$\displaystyle{\left(\sqrt{{{x}+{5}}}\sqrt{{{x}+{5}}}={x}+{5}\right.}$$
$$\displaystyle={\left({2}{x}-{5}\right)}\frac{{\sqrt{{{x}+{5}}}}}{{{x}+{5}}}$$
Therefore, $$\displaystyle\frac{{{2}{x}-{5}}}{{\sqrt{{{x}+{5}}}}}=\frac{{{\left({2}{x}-{5}\right)}\sqrt{{{x}+{5}}}}}{{{x}+{5}}}$$

Relevant Questions

State which of the following are linear functions.
a. f(x)=3
b. g(x)=5-2x
c. $$\displaystyle{h}{\left({x}\right)}=\frac{{2}}{{x}}+{3}$$
d. t(x)=5(x-2)
Simplify each expression.
1. -n+9n+3-8-8n
2. 3(-4x+5y)-3x(2+4)
5. 5-4y+x+9y
7. -2x+3y-5x-(-8y)
Graph for $$\displaystyle{y}=\frac{{1}}{{2}}{x}-{5}$$
Find the x and y intercepts and graph the line.
2x+3y=-9
find the standard matrix for the linear operator t defined by the formula $$\displaystyle{T}{\left({x},{y},{z}\right)}={\left({x}-{2}{y},{2}{x}+{y}\right)}$$
Give the equation of the line perpendicular to the line described and satisfying the given conditions. $$\displaystyle{y}=-{\left(\frac{{4}}{{3}}\right)}{x}+{5}$$ with y-intercept (0, -8)
Identify the lines that are parallel.
Line 1: y=−5
Line 2: 4y−16x=−1
Line 3: x=−6
Line 4: y+5=4(x+1)
A line passes through the point (2, 1) and has a slope of $$\frac{-3}{5}$$.
What is an equation of the line?
A.$$y-1=\frac{-3}{5}(x-2)$$
B.$$y-1=\frac{-5}{3}(x-2)$$
C.$$y-2=\frac{-3}{5}(x-1)$$
D.$$y-2=\frac{-5}{3}(x-1)$$