Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate. Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evide

Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate. Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evide

Question
Functions
asked 2021-01-15
Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate.
Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evidence that would confirm the co-worker's point of view. Provide one piece of evidence that would refute it. Hint: It may be helpful to consider the domain and range of different functions, as well as the relationship of each of these functions to triangles in the unit circle

Answers (1)

2021-01-16

A sinusoidal function is of the form \(\displaystyle{h}={a}{\sin{{\left[{b}{\left({t}−{c}\right)}\right]}}}+{d}{\quad\text{or}\quad}{h}={a}{\cos{{\left[{b}{\left({t}−{c}\right)}\right]}}}+{d}\) where ∣a∣∣a∣ is the amplitude, \(2π/b\) is the period, c is the phase shift, and dd is the vertical shift (its midline).

The diameter of the wheel is twice the amplitude. Since the diameter of the wheel is 90 ft, then the amplitude is \(∣a∣=90/2=45.\) 

The axle point of the wheel is the vertical shift of the sinusoid. Since the axle of the wheel will be 55 ft above the ground, then d=55.

The wheel makes one revolution every 60 seconds so the period is 60. Therefore \(2π/b=60\). Solving this for b gives \(b=2π/60=π/30\)

A since curve starts at its midline and a cosine curve starts at its maximum. Since we need the function to start at the ground, which is the minimum of the function, we need to use the cosine form with \(a<0\) or use a sine curve that has a phase shift.

If we use a cosine curve, then \(a=−45\) so it will start at the minimum and we don't need a phase shift. We then have everything we need to write the cosine function. Substituting \(a=−45\), \(b=π/30\), \(c=0\), and \(d=55\) into \(h=a \cos[b(t−c)]+d\) then gives \(h=−45cos(π/30)t+55\).

If we use a sine curve, we need to determine how much the phase shift needs to be so that it will start at a minimum. \(y=\sin x\) has a minimum at \((−π2,−1)\). Since \(b=π/30\), then the parent function has been horizontally compressed by a factor of \(30/π\). The minimum after the compression is then \((−(\pi/2)⋅30/π,−1)=(−15,−1)\). The graph after the compression must then be horizontally translated right 15 units to get a minimum at (0,−1). Therefore \(c=15\). Note that the minimum of our graph is not (0,−1), we just needed to determine how far horizontally the graph needed to be moved, which is not affected by the change in amplitude and vertical shift. 

Since we don't need a reflection, then \(a=45\) for the sine curve. We then have everything we need to write the sine function. Substituting \(a=45, b=π/30, c=15\) and d=55 into \(h=a\sin[b(t−c)]+d\) then gives \(h=45\sin[π30(t−15)]+55\).  

Part 2:  

A piece of evidence that sine and cosine are basically the same thing is that they have the same domain of all real numbers and range of [−1,1].  

A piece of evidence that they are not the same thing, is that they have different starting points (the point where x=0) and different intervals of increasing and decreasing. Sine has a starting point at the origin, increases to a maximum at \(x=π/2\), decreases to a minimum at \(x=3π/2\), increases to a maximum at \(x=5π/2\), and continues this pattern of increasing/decreasing every \(\pi\) units. Cosine, however, starts at a maximum at \(x=0\), decreasing to a minimum and \(x=π\), increases to a maximum at \(x=2π\), and continues this pattern of increasing/decreasing every π units.

0

Relevant Questions

asked 2021-03-12
A 75.0-kg man steps off a platform 3.10 m above the ground. Hekeeps his legs straight as he falls, but at the moment his feettouch the ground his knees begin to bend, and, treated as aparticle, he moves an additional 0.60 m before coming torest.
a) what is the speed at the instant his feet touch theground?
b) treating him as a particle, what is his acceleration(magnitude and direction) as he slows down, if the acceleration isassumed to be constant?
c) draw his free-body diagram (see section 4.6). in termsof forces on the diagram, what is the net force on him? usenewton's laws and the results of part (b) to calculate the averageforce his feet exert on the ground while he slows down. expressthis force in newtons and also as a multiple of his weight.
asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-04-25
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius \(\displaystyle{R}={7.4}\times{10}^{{-{15}}}\) m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit \(\displaystyle={1.66}\times{10}^{{-{27}}}\) kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
asked 2021-05-12
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-04-16
A child is playing on the floor of a recreational vehicle (RV) asit moves along the highway at a constant velocity. He has atoy cannon, which shoots a marble at a fixed angle and speed withrespect to the floor. The cannon can be aimed toward thefront or the rear of the RV. Is the range toward the frontthe same as, less than, or greater than the range toward the rear?Answer this question (a) from the child's point of view and (b)from the point of view of an observer standing still on the ground.Justify your answers.
asked 2021-03-29
Two stationary point charges +3 nC and + 2nC are separated bya distance of 50cm. An electron is released from rest at a pointmidway between the two charges and moves along the line connectingthe two charges. What is the speed of the electron when it is 10cmfrom +3nC charge?
Besides the hints I'd like to ask you to give me numericalsolution so I can verify my answer later on. It would be nice ifyou could write it out, but a numerical anser would be fine alongwith the hint how to get there.
asked 2021-04-13
As depicted in the applet, Albertine finds herself in a very odd contraption. She sits in a reclining chair, in front of a large, compressed spring. The spring is compressed 5.00 m from its equilibrium position, and a glass sits 19.8m from her outstretched foot.
a)Assuming that Albertine's mass is 60.0kg , what is \(\displaystyle\mu_{{k}}\), the coefficient of kinetic friction between the chair and the waxed floor? Use \(\displaystyle{g}={9.80}\frac{{m}}{{s}^{{2}}}\) for the magnitude of the acceleration due to gravity. Assume that the value of k found in Part A has three significant figures. Note that if you did not assume that k has three significant figures, it would be impossible to get three significant figures for \(\displaystyle\mu_{{k}}\), since the length scale along the bottom of the applet does not allow you to measure distances to that accuracy with different values of k.
...