Ask question

# Solve the problem. Let vector u have initial point P1=(0,2) and terminal point P2=(−2,6). Let vector v have initial point Q1=(3,0) and terminal point Q2=(1,4). U and v have the same direction. Find ||u|| and ||v||. Is u=v? # Solve the problem. Let vector u have initial point P1=(0,2) and terminal point P2=(−2,6). Let vector v have initial point Q1=(3,0) and terminal point Q2=(1,4). U and v have the same direction. Find ||u|| and ||v||. Is u=v?

Question
Vectors asked 2021-02-02
Solve the problem. Let vector u have initial point P1=(0,2) and terminal point P2=(−2,6). Let vector v have initial point Q1=(3,0) and terminal point Q2=(1,4). U and v have the same direction. Find ||u|| and ||v||. Is u=v?

## Answers (1) 2021-02-03
If a vector has an initial point of (x1,y1) and a terminal point of (x2,y2), then the component form of the vector is ⟨x2−x1,y2−y1⟩.
If v has an initial point of P1=(0,2) and P2(−2,6), then v=⟨−2−0,6−2⟩=⟨−2,4⟩.
If u has an initial point of Q1=(3,0) and Q2(1,4), then u=⟨1−3,4−0⟩=⟨−2,4⟩.
The magnitude of a vector with component form of ⟨a,b⟩ is $$\displaystyle√{\left({\left({a}^{{2}}\right)}+{\left({b}^{{2}}\right)}\right)}$$
Since uu and vv have the same component form of ⟨−2,4⟩, they have the same magnitude of:
$$\displaystyle∣∣{u}∣∣=∣∣{v}∣∣=√{\left({\left(−{2}\right)}^{{2}}\right)}+{4}^{{2}}=√{\left({4}+{16}\right)}=√{20}={2}√{5}.$$
Two vectors are equal if they have the same direction and magnitude. It is given that they have the same direction and we know they have the same magnitude so we can then conclude that u=v. Two vectors are also equal if they have the same component form so we could have also concluded that u=v since they both have a component form of ⟨−2,4⟩.

### Relevant Questions asked 2020-12-14
Find the vector that has the same direction as (6, 2, -3) but has length 4. asked 2021-05-05
The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with $$\displaystyle\mu={1.5}$$ and $$\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}$$.
(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.
(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than $$\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}$$.
(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of $$\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}$$? Explain, based on theprobability of this occurring.
(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?
(e) What is the moment generating function for X? asked 2021-02-24

Let $$u=\begin{bmatrix}2 \\ 5 \\ -1 \end{bmatrix} , v=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix} \text{ and } w=\begin{bmatrix}-4 \\ 17 \\ -13 \end{bmatrix}$$ It can be shown that $$4u-3v-w=0$$. Use this fact (and no row operations) to find a solution to the system $$4u-3v-w=0$$ , where
$$A=\begin{bmatrix}2 & -4 \\5 & 17\\-1&-13 \end{bmatrix} , x=\begin{bmatrix}x_1 \\ x_2 \end{bmatrix} , b=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix}$$ asked 2021-05-16
Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.
A. Let y=f(x) be the equation of C. Find f(x).
B. Find the slope at P of the tangent to C.
C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?
D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.
E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.
Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P. asked 2021-03-02

Let u,$$v_1$$ and $$v_2$$ be vectors in $$R^3$$, and let $$c_1$$ and $$c_2$$ be scalars. If u is orthogonal to both $$v_1$$ and $$v_2$$, prove that u is orthogonal to the vector $$c_1v_1+c_2v_2$$. asked 2021-02-11
Let F be a fixed 3x2 matrix, and let H be the set of all matrices A in $$\displaystyle{M}_{{{2}×{4}}}$$ with the property that FA = 0 (the zero matrix in $$\displaystyle{M}_{{{3}×{4}}}{)}$$. Determine if H is a subspace of $$\displaystyle{M}_{{{2}×{4}}}$$ asked 2021-02-05
Suppose that u,vu,v and w are vectors such that ⟨u,v⟩=6, ⟨v,w⟩=−7, ⟨u,w⟩=13⟨ ∣∣u∣∣=1,∣∣v∣∣=6,∣∣w∣∣=19∣∣u∣∣=1, given expression ⟨u+v,u+w⟩. asked 2020-12-29
The position vector $$\displaystyle{r}{\left({t}\right)}={\left\langle{\ln{{t}}},\frac{{1}}{{t}^{{2}}},{t}^{{4}}\right\rangle}$$ describes the path of an object moving in space.
(a) Find the velocity vector, speed, and acceleration vector of the object.
(b) Evaluate the velocity vector and acceleration vector of the object at the given value of $$\displaystyle{t}=\sqrt{{3}}$$ asked 2021-02-23
An electron that has velocity $$\displaystyle{v}={\left({2.0}\times{10}^{{6}}\ \frac{{m}}{{s}}\right)}{i}+{\left({3.0}\times{10}^{{6}}\ \frac{{m}}{{s}}\right)}{j}$$ moves through the uniform magneticfield $$\displaystyle{B}={\left({0.30}{T}\right)}{i}-{\left({0.15}{T}\right)}{j}$$
a) Find the force on the electron.
b) Repeat your calculation for a proton having the same velocity. asked 2021-04-25
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
...