Consider the plane, š« in ${\u0101\x84\x9d}^{3}$ by the vector equation

$x(s,t)=(1,\u0101\x88\x921,2)+s(1,0,1)+t(1,\u0101\x88\x921,0);s,t\u0101\x88\x88\u0101\x84\x9d$

Compute a unit normal vector, n, to this plane.

My attempt is the third normal vector is $(1,\frac{2s}{t}+1,1)$ and the unit normal vector I got is

$\frac{1}{\sqrt{3+\frac{4{s}^{2}}{{t}^{2}}+\frac{4s}{t}}}(1,\frac{2s}{t}+1,1)$

$x(s,t)=(1,\u0101\x88\x921,2)+s(1,0,1)+t(1,\u0101\x88\x921,0);s,t\u0101\x88\x88\u0101\x84\x9d$

Compute a unit normal vector, n, to this plane.

My attempt is the third normal vector is $(1,\frac{2s}{t}+1,1)$ and the unit normal vector I got is

$\frac{1}{\sqrt{3+\frac{4{s}^{2}}{{t}^{2}}+\frac{4s}{t}}}(1,\frac{2s}{t}+1,1)$