The formula that I know for correlation coefficient

$\frac{\sum ({x}_{i}-\overline{x})({Y}_{i}-\overline{Y})}{\sqrt{\sum ({x}_{i}-\overline{x}{)}^{2}\sum ({Y}_{i}-\overline{Y}{)}^{2}}}$

If the only given values I have are $\sum {x}_{i},\sum {x}_{i}^{2},\sum {y}_{i},\sum {x}_{i}{y}_{i}$ is it even possible to compute the correlation coefficient?

$\frac{\sum ({x}_{i}-\overline{x})({Y}_{i}-\overline{Y})}{\sqrt{\sum ({x}_{i}-\overline{x}{)}^{2}\sum ({Y}_{i}-\overline{Y}{)}^{2}}}$

If the only given values I have are $\sum {x}_{i},\sum {x}_{i}^{2},\sum {y}_{i},\sum {x}_{i}{y}_{i}$ is it even possible to compute the correlation coefficient?