# Write the following in exponential form. log1.27 5.86 Question
Logarithms Write the following in exponential form.
$$\displaystyle{\log{{1.27}}}{5.86}$$ 2021-02-03
Exponential and logarithmic functions are inverses so they can then be converted between each form. For a log form of $$\displaystyle{y}={\log{{b}}}{x}$$, the exponential form is by=x.
Let $$\displaystyle{y}={\log{{1.275}}}{.86}$$. Then b=1.27 and x=5.86. The exponential form is then $$\displaystyle{1.27}^{{y}}={5.86}$$

### Relevant Questions Write in exponential form.
$$\displaystyle{\log{{3}}}{1}={0}$$ \ln(x − 2) = 5 in exponential form Write $$\log_3 \frac{1}{27x^{2}$$ in the form a+b $$\log_3x$$ where a and b are integers Write a single logarithm. $$\displaystyle{2}{\ln{{x}}}+\frac{{1}}{{3}}{\ln{{\left({x}-{5}\right)}}}$$ Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. $$\displaystyle{\log{{2}}}{\left({3}{x}−{1}\right)}={\log{{2}}}{\left({x}+{1}\right)}+{3}$$ $$\displaystyle{{\log{{10}}}^{{x}}=}{2}{a}{\quad\text{and}\quad}{{\log{{10}}}^{{y}}=}\frac{{b}}{{2}}$$ write $$\displaystyle{10}^{{a}}$$ in terms of x solve the equation $$\displaystyle{\log{{\left({b}{a}{s}{e}{16}\right)}}}{\left({3}{x}-{1}\right)}={\log{{\left({b}{a}{s}{e}{4}\right)}}}{\left({3}{x}\right)}+{\log{{\left({b}{a}{s}{e}{4}\right)}}}{0.5}$$? Use the logarithmic differentiation of the following. $$f(x)=x^{x}$$ Use the logarithmic differentiation of the following. $$\displaystyle{f{{\left({x}\right)}}}={x}^{{{x}}}$$ Write each expression as a single natural logarithm. $$2\ln 8-3\ln 4$$