An initial population of 4 tribbles was brought aboard the Enterprise. They grow at a rate of 50% every hour. Write an exponential growth function for this scenario

Question
Functions
asked 2021-01-27
An initial population of 4 tribbles was brought aboard the Enterprise. They grow at a rate of 50% every hour. Write an exponential growth function for this scenario

Answers (1)

2021-01-28
An exponential growth function is of the form \(\displaystyle{y}={a}{\left({b}\right)}^{{x}}\) where aa is the initial amount and bb is the growth factor.
If the initial population is 4 tribbles, then a=4.
If the population is growing at a rate of 50% every hour, then the growth factor is b=100%+50%=150%=1.5.
The exponential growth function is then y=4(1.5)x.
0

Relevant Questions

asked 2021-02-11
Several models have been proposed to explain the diversification of life during geological periods. According to Benton (1997), The diversification of marine families in the past 600 million years (Myr) appears to have followed two or three logistic curves, with equilibrium levels that lasted for up to 200 Myr. In contrast, continental organisms clearly show an exponential pattern of diversification, and although it is not clear whether the empirical diversification patterns are real or are artifacts of a poor fossil record, the latter explanation seems unlikely. In this problem, we will investigate three models fordiversification. They are analogous to models for populationgrowth, however, the quantities involved have a differentinterpretation. We denote by N(t) the diversification function,which counts the number of taxa as a function of time, and by rthe intrinsic rate of diversification.
(a) (Exponential Model) This model is described by \(\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{e}}}{N}\ {\left({8.86}\right)}.\) Solve (8.86) with the initial condition N(0) at time 0, and show that \(\displaystyle{r}_{{{e}}}\) can be estimated from \(\displaystyle{r}_{{{e}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ {\left({8.87}\right)}\)
(b) (Logistic Growth) This model is described by \(\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{l}}}{N}\ {\left({1}\ -\ {\frac{{{N}}}{{{K}}}}\right)}\ {\left({8.88}\right)}\) where K is the equilibrium value. Solve (8.88) with the initial condition N(0) at time 0, and show that \(\displaystyle{r}_{{{l}}}\) can be estimated from \(\displaystyle{r}_{{{l}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{K}\ -\ {N}{\left({0}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ +\ {\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{K}\ -\ {N}{\left({t}\right)}}}}\right]}\ {\left({8.89}\right)}\) for \(\displaystyle{N}{\left({t}\right)}\ {<}\ {K}.\)
(c) Assume that \(\displaystyle{N}{\left({0}\right)}={1}\) and \(\displaystyle{N}{\left({10}\right)}={1000}.\) Estimate \(\displaystyle{r}_{{{e}}}\) and \(\displaystyle{r}_{{{l}}}\) for both \(\displaystyle{K}={1001}\) and \(\displaystyle{K}={10000}.\)
(d) Use your answer in (c) to explain the following quote from Stanley (1979): There must be a general tendency for calculated values of \(\displaystyle{\left[{r}\right]}\) to represent underestimates of exponential rates,because some radiation will have followed distinctly sigmoid paths during the interval evaluated.
(e) Explain why the exponential model is a good approximation to the logistic model when \(\displaystyle\frac{{N}}{{K}}\) is small compared with 1.
asked 2021-01-15
Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate.
Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evidence that would confirm the co-worker's point of view. Provide one piece of evidence that would refute it. Hint: It may be helpful to consider the domain and range of different functions, as well as the relationship of each of these functions to triangles in the unit circle
asked 2021-01-17
In 1995 the population of a certain city was 34,000. Since then, the population has been growing at the rate of 4% per year.
a) Is this an example of linear or exponential growth?
b) Find a function f that computes the population x years after 1995?
c) Find the population in 2002
asked 2021-02-24
Consider the following case of exponential growth. Complete parts a through c below.
The population of a town with an initial population of 75,000 grows at a rate of 5.5​% per year.
a. Create an exponential function of the form
\(Q=Q0 xx (1+r)t\)​, ​(where r>0 for growth and r<0 for​ decay) to model the situation described
asked 2020-11-24
Below is data collected from the growth of two different trees over time. Each tree was planted in 1960, and the tree's height has been collected every ten years.
What type of function is the growth of Tree A? How can you tell?
What type of function is the growth of Tree B? How can you tell?
Write an equation for each function of the trees' growth over time. For time, you may use x=0 for 1960.
Compare the growth rate for each of the trees.
Compare the starting heights of each of the trees.
When will Tree A's height exceed Tree B's height?
asked 2020-11-27
Look at this table: x y 1 – 2 2 – 4 3 – 8 4 – 16 5 – 32 Write a linear (y=mx+b), quadratic (y=ax2), or exponential (y=a(b)x) function that models the data. y=
asked 2020-10-23
The close connection between logarithm and exponential functions is used often by statisticians as they analyze patterns in data where the numbers range from very small to very large values. For example, the following table shows values that might occur as a bacteria population grows according to the exponential function P(t)=50(2t):
Time t (in hours)012345678 Population P(t)501002004008001,6003,2006,40012,800
a. Complete another row of the table with values log (population) and identify the familiar function pattern illustrated by values in that row.
b. Use your calculator to find log 2 and see how that value relates to the pattern you found in the log P(t) row of the data table.
c. Suppose that you had a different set of experimental data that you suspected was an example of exponential growth or decay, and you produced a similar “third row” with values equal to the logarithms of the population data.
How could you use the pattern in that “third row” to figure out the actual rule for the exponential growth or decay model?
asked 2020-10-28
The fox population in a certain region has a continuous growth rate of 6 percent per year. It is estimated that the population in the year 2000 was 18900.
(a) Find a function that models the population t years after 2000 (t=0 for 2000). Hint: Use an exponential function with base e.
(b) Use the function from part (a) to estimate the fox population in the year 2008.
asked 2021-01-05
The fox population in a certain region has a continuous growth rate of 6 percent per year. It is estimated that the population in the year 2000 was 18900.
(a) Find a function that models the population t years after 2000 (t=0 for 2000). Hint: Use an exponential function with base e.
(b) Use the function from part (a) to estimate the fox population in the year 2008.
asked 2021-02-11
A certain region had an initial rabbit population of 24, and the population is increasing at a rate of 26% each year due to a lack of natural predators. Write an exponential function that models N, the number of rabbits after t years, and use it to find the expected number of rabbits after 50 years.
...