 # I received a question on a previous exam, but I had no clue how to go about doing it. I know I'm supposed to use the MVT, IVT and FTC, but I'm not sure where. The question is Suppose f(x) is integrable on [a,b], with f(x)>=0 on [a,b], and that g(x) is continuous on [a,b]. Assuming that f(x)g(x) is integrable on [a,b], show that EEc in [a,b] Ivan Buckley 2022-09-17 Answered
I received a question on a previous exam, but I had no clue how to go about doing it. I know I'm supposed to use the MVT, IVT and FTC, but I'm not sure where. The question is
Suppose $f\left(x\right)$ is integrable on $\left[a,b\right]$, with $f\left(x\right)\ge 0$ on $\left[a,b\right]$, and that $g\left(x\right)$ is continuous on $\left[a,b\right]$. Assuming that $f\left(x\right)g\left(x\right)$ is integrable on $\left[a,b\right]$, show that $\mathrm{\exists }c\in \left[a,b\right]$ so that
${\int }_{a}^{b}f\left(x\right)g\left(x\right)dx=g\left(c\right){\int }_{a}^{b}f\left(x\right)dx.$
Thank you in advance.
You can still ask an expert for help

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Marley Stone
$g\left(x\right)$ takes its maximum and minimum values $M$ and $m$ on $\left[a,b\right]$. Say, $g\left({x}_{1}\right)=M$ and ${g}_{\left(}{x}_{2}\right)=m$. Then
$g\left({x}_{1}\right){\int }_{a}^{b}f\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx=M{\int }_{a}^{b}f\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx\ge {\int }_{a}^{b}f\left(x\right)g\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx\ge m{\int }_{a}^{b}f\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx=g\left({x}_{2}\right){\int }_{a}^{b}f\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx.$
Can you now see why there is a $c\in \left[a,b\right]$ with
${\int }_{a}^{b}f\left(x\right)g\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx=g\left(c\right){\int }_{a}^{b}f\left(x\right)\phantom{\rule{thinmathspace}{0ex}}dx?$

We have step-by-step solutions for your answer!