Question

What is the decision at a 0.05 level of significance for each of the following tests? F(3, 26) = 3.00 Retain or reject the null hypothesis? F(4, 55) =

Significance tests
ANSWERED
asked 2021-01-24
What is the decision at a 0.05 level of significance for each of the following tests?
F(3, 26) = 3.00
Retain or reject the null hypothesis?
F(4, 55) = 2.54
Retain or reject the null hypothesis?
F(4, 30) = 2.72
Retain or reject the null hypothesis?
F(2, 12) = 3.81
Retain or reject the null hypothesis?

Answers (1)

2021-01-25
Step 1
From the provided information,
Level of significance \((\alpha) = 0.05\)
F (3, 26) = 3.00
The critical value of F at 3 and 26 degrees of freedom from the F value is 2.98.
Since, the test statistic value is greater than critical value, therefore, the null hypothesis will be rejected.
Step 2
F (4, 55) = 2.54
The critical value of F at 4 and 55 degrees of freedom from the F value is 2.54.
Since, the test statistic value is equal to the critical value, therefore, the null hypothesis will fail to reject.
Step 3
F (4, 30) = 2.72
The critical value of F at 4 and 30 degrees of freedom from the F value is 2.69.
Since, the test statistic value is greater than critical value, therefore, the null hypothesis will be rejected.
Step 4
F (2, 12) = 3.81
The critical value of F at 4 and 55 degrees of freedom from the F value is 3.89.
Since, the test statistic value is less than critical value, therefore, the null hypothesis will fail to reject.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-01-31
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean:
For a two-tailed hypothesis test with level of significance a and null hypothesis \(H_{0} : \mu = k\) we reject Ho whenever k falls outside the \(c = 1 — \alpha\) confidence interval for \(\mu\) based on the sample data. When A falls within the \(c = 1 — \alpha\) confidence interval. we do reject \(H_{0}\).
For a one-tailed hypothesis test with level of significance Ho : \(\mu = k\) and null hypothesiswe reject Ho whenever A falls outsidethe \(c = 1 — 2\alpha\) confidence interval for p based on the sample data. When A falls within the \(c = 1 — 2\alpha\) confidence interval, we do not reject \(H_{0}\).
A corresponding relationship between confidence intervals and two-tailed hypothesis tests is also valid for other parameters, such as p, \(\mu1 — \mu_2,\ and\ p_{1}, - p_{2}\).
(a) Consider the hypotheses \(H_{0} : \mu_{1} — \mu_{2} = O\ and\ H_{1} : \mu_{1} — \mu_{2} \neq\) Suppose a 95% confidence interval for \(\mu_{1} — \mu_{2}\) contains only positive numbers. Should you reject the null hypothesis when \(\alpha = 0.05\)? Why or why not?
asked 2020-12-24
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean: For a two-tailed hypothesis test with level of significance a and null hypothesis H_0 : mu = k we reject Ho whenever k falls outside the c = 1 — alpha confidence interval for mu based on the sample data. When A falls within the c = 1 — alpha confidence interval. we do reject H_0. For a one-tailed hypothesis test with level of significance Ho : mu = k and null hypothesiswe reject Ho whenever A falls outsidethe c = 1 — 2alpha confidence interval for p based on the sample data. When A falls within thec = 1 — 2alpha confidence interval, we do not reject H_0. A corresponding relationship between confidence intervals and two-tailed hypothesis tests is also valid for other parameters, such as p,mu1 — mu_2, and p_1, - p_2. (b) Consider the hypotheses H_0 : p_1 — p_2 = O and H_1 : p_1 — p_2 != Suppose a 98% confidence interval for p_1 — p_2 contains only positive numbers. Should you reject the null hypothesis when alpha = 0.05? Why or why not?
asked 2020-12-07
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
asked 2020-10-23
1. Find each of the requested values for a population with a mean of \(? = 40\), and a standard deviation of \(? = 8\) A. What is the z-score corresponding to \(X = 52?\) B. What is the X value corresponding to \(z = - 0.50?\) C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores? D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores? E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores? 2. True or false: a. All normal distributions are symmetrical b. All normal distributions have a mean of 1.0 c. All normal distributions have a standard deviation of 1.0 d. The total area under the curve of all normal distributions is equal to 1 3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\) 4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\). 5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.
asked 2021-06-11
Table shows the number of wireless service subscribers in the United States and their average monthly bill in the years from 2000 through 2015. \begin{matrix} \text{Year} & \text{Subscribers} & \text{Average Monthly}\ \text{ } & \text{(millions)} & \text{Revenue per Subscriber Unit ($)}\ \text{2000} & \text{109.5} & \text{48.55}\ \text{2001} & \text{128.4} & \text{49.79}\ \text{2002} & \text{140.8} & \text{51.00}\ \text{2003} & \text{158.7} & \text{51.55}\ \text{2004} & \text{182.1} & \text{52.54}\ \text{2005} & \text{207.9} & \text{50.65}\ \text{2006} & \text{233.0} & \text{49.07}\ \text{2007} & \text{255.4} & \text{49.26}\ \text{2008} & \text{270.3} & \text{48.87}\ \text{2009} & \text{285.6} & \text{47.97}\ \text{2010} & \text{296.3} & \text{47.53}\ \text{2011} & \text{316.0} & \text{46.11}\ \text{2012} & \text{326.5} & \text{48.99}\ \text{2013} & \text{335.7} & \text{48.79}\ \text{2014} & \text{355.4} & \text{46.64}\ \text{2015} & \text{377.9} & \text{44.65}\ \end{matrix} One of the scatter plots suggests a linear model. Use the points at t = 0 and t = 15 to find a model in the form y = mx + b.
asked 2021-01-17
A new thermostat has been engineered for the frozen food cases in large supermarkets. Both the old and new thermostats hold temperatures at an average of \(25^{\circ}F\). However, it is hoped that the new thermostat might be more dependable in the sense that it will hold temperatures closer to \(25^{\circ}F\). One frozen food case was equipped with the new thermostat, and a random sample of 21 temperature readings gave a sample variance of 5.1. Another similar frozen food case was equipped with the old thermostat, and a random sample of 19 temperature readings gave a sample variance of 12.8. Test the claim that the population variance of the old thermostat temperature readings is larger than that for the new thermostat. Use a \(5\%\) level of significance. How could your test conclusion relate to the question regarding the dependability of the temperature readings? (Let population 1 refer to data from the old thermostat.)
(a) What is the level of significance?
State the null and alternate hypotheses.
\(H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}>?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}\neq?_{2}^{2}H0:?_{1}^{2}=?_{2}^{2},H1:?_{1}^{2}?_{2}^{2},H1:?_{1}^{2}=?_{2}^{2}\)
(b) Find the value of the sample F statistic. (Round your answer to two decimal places.)
What are the degrees of freedom?
\(df_{N} = ?\)
\(df_{D} = ?\)
What assumptions are you making about the original distribution?
The populations follow independent normal distributions. We have random samples from each population.The populations follow dependent normal distributions. We have random samples from each population.The populations follow independent normal distributions.The populations follow independent chi-square distributions. We have random samples from each population.
(c) Find or estimate the P-value of the sample test statistic. (Round your answer to four decimal places.)
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis?
At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the ? = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant.At the ? = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant.
(e) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings.Fail to reject the null hypothesis, there is sufficient evidence that the population variance is larger in the old thermostat temperature readings. Fail to reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.Reject the null hypothesis, there is insufficient evidence that the population variance is larger in the old thermostat temperature readings.
asked 2021-01-10
A company is marketing a new product they say works better than the traditional test tube. There is so much interest in the product that 30 different labs around the world are testing the claim that this product is actually better. If each study uses an alpha level (alpha) of .10, and if the null hypothesis is true (that the test tube isn't any better that the traditional one), how many of the hypothesis tests would we expect to incorrectly find statistical significance (that is, conclude that the new test tube is better, when it actually isn't)?
asked 2020-11-02
As access to computers becomes more and more prevalent, we see the P-value reported in hypothesis testing more frequently. Review the use of the P-value in hypothesis testing. What is the difference between the level of significance of a test and the P-value? Considering both the P-value and level of significance. under what conditions do we reject or fail to reject the null hypothesis?
asked 2020-12-24
For the same data, null hypothesis, and level of significance, if the conclusion is to reject \(H_{0}\) based on a two-tailed test, do you also reject Ho based on a one-tailed test? Explain.
asked 2020-12-30
For the same data, null hypothesis, and level of significance, is it possible that a one-tailed test results in the conclusion to reject Hg while a two tilled test results in the conclusion to fail to reject Ho? Explain.

You might be interested in

...