If p,q,r,x,y,z are non zero real number such that

$px+qy+rz+\sqrt{({p}^{2}+{q}^{2}+{r}^{2})({x}^{2}+{y}^{2}+{z}^{2})}=0$

Then $\frac{py}{qx}+\frac{qz}{ry}+\frac{rx}{pz}$ is

what try

$(px+qy+rz{)}^{2}=({p}^{2}+{q}^{2}+{r}^{2})({x}^{2}+{y}^{2}+{z}^{2})$

${p}^{2}{x}^{2}+{q}^{2}{y}^{2}+{r}^{2}{z}^{2}+2pqxy+2qryz+2prxz={p}^{2}{x}^{2}+{p}^{2}{y}^{2}+{p}^{2}{z}^{2}+{q}^{2}{x}^{2}+{q}^{2}{y}^{2}+{q}^{2}{z}^{2}+{r}^{2}{x}^{2}+{r}^{2}{y}^{2}+{r}^{2}{z}^{2}$

$2pqxy+2qryz+2prxz={p}^{2}{y}^{2}+{p}^{2}{z}^{2}+{q}^{2}{x}^{2}+{q}^{2}{z}^{2}+{r}^{2}{x}^{2}+{r}^{2}{y}^{2}$

How do i solve it?

$px+qy+rz+\sqrt{({p}^{2}+{q}^{2}+{r}^{2})({x}^{2}+{y}^{2}+{z}^{2})}=0$

Then $\frac{py}{qx}+\frac{qz}{ry}+\frac{rx}{pz}$ is

what try

$(px+qy+rz{)}^{2}=({p}^{2}+{q}^{2}+{r}^{2})({x}^{2}+{y}^{2}+{z}^{2})$

${p}^{2}{x}^{2}+{q}^{2}{y}^{2}+{r}^{2}{z}^{2}+2pqxy+2qryz+2prxz={p}^{2}{x}^{2}+{p}^{2}{y}^{2}+{p}^{2}{z}^{2}+{q}^{2}{x}^{2}+{q}^{2}{y}^{2}+{q}^{2}{z}^{2}+{r}^{2}{x}^{2}+{r}^{2}{y}^{2}+{r}^{2}{z}^{2}$

$2pqxy+2qryz+2prxz={p}^{2}{y}^{2}+{p}^{2}{z}^{2}+{q}^{2}{x}^{2}+{q}^{2}{z}^{2}+{r}^{2}{x}^{2}+{r}^{2}{y}^{2}$

How do i solve it?