 # Let X~ Geom(0.75). Find the probability that X is divisible by 3 Zack Chase 2022-09-17 Answered
Let $X\sim Geom\left(0.75\right)$. Find the probability that X is divisible by 3
You can still ask an expert for help

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it unfideneigreewl
Step 1
There are two versions of the geometric distribution. In one of them, the random variable X measures the number of trials until the first success, including the trial that gave the success. In the other version, the random variable Y counts the number of failures until the first success.
In elementary courses, the first version is more common than the second. So we use that one. Thus the possible values of X are 1,2,3,4,….
So X is divisible by 3 if the number of trials is 3,6,9,12,….
Step 2
We have $Pr\left(X=3\right)=\left(0.25{\right)}^{2}\left(0.75\right)$ (2 failures and then success). Similarly, $Pr\left(X=6\right)=\left(0.25{\right)}^{5}\left(0.75\right)$, and $Pr\left(X=9\right)=\left(0.25{\right)}^{8}\left(0.75\right)$, and so on. Thus the probability that X is divisible by 3 is $\left(0.25{\right)}^{2}\left(0.75\right)+\left(0.25{\right)}^{5}\left(0.75\right)+\left(0.25{\right)}^{8}\left(0.75\right)+\left(0.25{\right)}^{11}\left(0.75\right)+\cdots .$
This is an infinite geometric series, with first term $a=\left(0.25{\right)}^{2}\left(0.75\right)$ and common ratio $r=\left(0.25{\right)}^{3}$. By a standard formula, the sum of the geometric series is equal to $\frac{a}{1-r}.$

We have step-by-step solutions for your answer!