 # How do you graph f(x)=3/x^2(x+5) using holes, vertical and horizontal asymptotes, x and y intercepts? Hrefnui9 2022-09-12 Answered
How do you graph $f\left(x\right)=\frac{3}{{x}^{2}\left(x+5\right)}$ using holes, vertical and horizontal asymptotes, x and y intercepts?
You can still ask an expert for help

• Live experts 24/7
• Questions are typically answered in as fast as 30 minutes
• Personalized clear answers

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it Leon Webster
For vertical asymptotes, look at the denominator. ${x}^{2}\left(x+5\right)\ne 0$ because the graph will be undefined

${x}^{2}\left(x+5\right)\ne 0$ means that the vertical asymptotes are x=0 and x=−5 when solving for x

For the horizontal asymptote, look at the degree of the numerator and denominator

If the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is y=0.

Or you can think of it as if you put some numbers into your f(x), you will notice that ${x}^{2}\left(x+5\right)$ will be a lot bigger than 3. Hence, when you divide a small number by a big number, $\frac{3}{{x}^{2}\left(x+5\right)}\to 0$

For your x and y intercepts,
sub y=0 for x intercepts,
$0=\frac{3}{{x}^{2}\left(x+5\right)}$
0=3 which isn't true so no x-intercepts

sub x=0 for y intercepts which cannot occur since x=0 is an asymptote

Therefore, there are no intercepts

Below is the graph. You can see that the endpoints of the graphs approaches the asymptotes y=0, x=0 and x=−5
graph{3/(x^2(x+5) [-10, 10, -5, 5]}