Rewrite the expression as an algebraic expression in x.

$$\mathrm{tan}({\mathrm{sin}}^{-1}(x))$$

$$\mathrm{tan}({\mathrm{sin}}^{-1}(x))$$

Zackary Duffy
2022-09-13
Answered

Rewrite the expression as an algebraic expression in x.

$$\mathrm{tan}({\mathrm{sin}}^{-1}(x))$$

$$\mathrm{tan}({\mathrm{sin}}^{-1}(x))$$

You can still ask an expert for help

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-01-30

Solve the equation $\frac{\sqrt{3}}{2}\mathrm{sin}\left(x\right)-\mathrm{cos}x={\mathrm{cos}}^{2}x$

My approach${\mathrm{cos}}^{2}x=1-{\mathrm{sin}}^{2}x$

$\frac{\sqrt{3}}{2}\mathrm{sin}x-{\mathrm{cos}}^{2}x=\mathrm{cos}x$

$\frac{\sqrt{3}}{2}\mathrm{sin}x+{\mathrm{sin}}^{2}x-1=\mathrm{cos}x$

$\sqrt{3}\mathrm{sin}x+2{\mathrm{sin}}^{2}x-2=2\mathrm{cos}x$

Though the equation comes in form of$\mathrm{sin}x$ from here onward after squaring still not getting the answer.

My approach

Though the equation comes in form of

asked 2022-01-24

Using the general solution for solve $\mathrm{sin}x=\mathrm{sin}y$

We know that$\mathrm{sin}x=\mathrm{sin}y$ implies that $x=2k\pi +y\text{}\text{or}\text{}x=2k\pi +\pi -y$ . If we want to solve $\mathrm{sin}x=\mathrm{sin}x$ using this method, it gives $x=2k\pi +x\text{}\text{or}\text{}x=2k\pi +\pi -x$ but it's obvious that solution is $x\in R$ . Why this happens? There is a similar problem for cosx=cosx.

We know that

asked 2022-02-27

Given that $-\frac{\pi}{2}\le \mathrm{arcsin}x\le \frac{\pi}{2}$ , find the exact of $\mathrm{cos}\left[\mathrm{arcsin}(-\frac{1}{3})\right]$

asked 2022-04-28

Solve trigonometric integral

${\int}_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{{\mathrm{sin}}^{2014}x}{{\mathrm{sin}}^{2014}x+{\mathrm{cos}}^{2014}x}dx$

asked 2022-04-25

How can I prove $|\mathrm{tan}\left(x\right)+\mathrm{tan}\left(y\right)|\ge |x+y|$ with the Mean Value Theorem?

for all$x,y\in [-\frac{\pi}{2},\frac{\pi}{2}]$

for all

asked 2022-03-31