A company is marketing a new product they say works better than the traditional test tube. There is so much interest in the product that 30 different

Significance tests
asked 2021-01-10
A company is marketing a new product they say works better than the traditional test tube. There is so much interest in the product that 30 different labs around the world are testing the claim that this product is actually better. If each study uses an alpha level (alpha) of .10, and if the null hypothesis is true (that the test tube isn't any better that the traditional one), how many of the hypothesis tests would we expect to incorrectly find statistical significance (that is, conclude that the new test tube is better, when it actually isn't)?

Expert Answers (1)

Step 1
When a researcher incorrectly rejects the null hypothesis or incorrectly finds the statistical significance, then this type of error is termed as type 1 error. Type 1 error is the rejection of true null hypothesis.
Step 2
The probability of committing a type I error is represented by our alpha level \((\alpha)\), which is the p-value below which we reject the null hypothesis. A p-value of 0.10 indicates that we are willing to accept a 10% chance that we are incorrectly rejecting the null hypothesis.
Hence we expect 10% of the hypothesis tests to incorrectly find statistical significance.
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-12-07
Hypothesis Testing Review
For each problem below, simply identify the null and alternative hypotheses. Use appropriate notation/symbols. You do not have to run any hypothesis tests, although it's good practice and I'll post answers for all of them.
1) A simple random sample of 44 men from a normally distributed population results in a standard deviation of 10.7 beats per minute. The normal range of pulse rates of adults is typically given as 60 to 100 beats per minute. If the range rule of thumb is applied to that normal range, the result is a standard deviation of 10 beats per minute. Use the sample results with a 0.10 significance level to test the claim that pulse rates of men have a standard deviation equal to 10 beats per minute.
2) In 1997, a survey of 880 households showed that 145 of them use e-mail. Use those sample results to test the claim that more than 15% of households use e-mail. Use a 0.05 significance level.
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-01-31
In there a relationship between confidence intervals and two-tailed hypothesis tests? The answer is yes. Let c be the level of confidence used to construct a confidence interval from sample data. Let * be the level of significance for a two-tailed hypothesis test. The following statement applies to hypothesis tests of the mean:
For a two-tailed hypothesis test with level of significance a and null hypothesis \(H_{0} : \mu = k\) we reject Ho whenever k falls outside the \(c = 1 — \alpha\) confidence interval for \(\mu\) based on the sample data. When A falls within the \(c = 1 — \alpha\) confidence interval. we do reject \(H_{0}\).
For a one-tailed hypothesis test with level of significance Ho : \(\mu = k\) and null hypothesiswe reject Ho whenever A falls outsidethe \(c = 1 — 2\alpha\) confidence interval for p based on the sample data. When A falls within the \(c = 1 — 2\alpha\) confidence interval, we do not reject \(H_{0}\).
A corresponding relationship between confidence intervals and two-tailed hypothesis tests is also valid for other parameters, such as p, \(\mu1 — \mu_2,\ and\ p_{1}, - p_{2}\).
(a) Consider the hypotheses \(H_{0} : \mu_{1} — \mu_{2} = O\ and\ H_{1} : \mu_{1} — \mu_{2} \neq\) Suppose a 95% confidence interval for \(\mu_{1} — \mu_{2}\) contains only positive numbers. Should you reject the null hypothesis when \(\alpha = 0.05\)? Why or why not?